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RECONSTRUCTION OF CLASSICAL GEOMETRIES FROM
THEIR AUTOMORPHISM GROUP

S. BARBINA

Abstract

Let V be a countably infinite dimensional vector space over a finite field F . Then V is ω-categorical,
and so are the projective space PG(V ) and the projective symplectic, unitary and orthogonal
spaces on V . Using a reconstruction method developed by M. Rubin we prove the following
result: let M be one of the spaces above, and let N be an ω-categorical structure such that
Aut(M) ∼= Aut(N ) as abstract groups. Then M and N are bi-intepretable. We also give a
reconstruction result for the affine group AGL(V ) acting on V by proving that V as an affine
space is interpretable in AGL(V ).

1. Introduction

Reconstruction results are intended to answer a very natural question: if we know
the automorphism group Aut(M) of a first order structure M, how much do we
know aboutM? The answer depends both on the extent to which we know Aut(M),
and the extent to which we want to recover M: we may want Aut(M) to determine
M up to bi-interpretability, or up to isomorphism.

A very natural class for investigating this question is the class of ω-categorical
structures: the Ryll-Nardzewski theorem ensures that the automorphism groups
of these structures are very rich. Here the standard topology on Aut(M) — that
generated by the stabilizers of finite tuples of M and their cosets — becomes
important: if two ω-categorical structures have automorphism groups which are
isomorphic as topological groups, then they are bi-interpretable. If the automor-
phism groups are isomorphic as permutation groups, then the two structures are
bi-definable. Reconstruction techniques for ω-categorical structures generally seek
conditions on Aut(M) so that the pure group determines the topology (this is the
case if a structure has the small index property) or its action on M.

The reconstruction method used in this paper has been developed by Mati Rubin
in [13], and falls into the latter category. We shall give an application of Rubin’s
method of weak ∀∃ interpretations to obtain reconstruction results for the projective
space PG(V ), where V is a vector space of dimension ω over a finite field F , and for
the projective symplectic, unitary and orthogonal spaces on V . The last section of
the paper contains a reconstruction result for various subgroups of the affine group
AGL(V ) acting on V : we show that V , as an affine space, is definable in AGL(V ).

Rubin’s main result gives a reconstruction criterion for the class of ω-categorical
structures without algebraicity. Whenever such a structure M has a so called weak
∀∃ interpretation and N is ω-categorical without algebraicity, it is enough to know
Aut(M) ∼= Aut(N ) in order to conclude that the permutation groups 〈Aut(M),M〉
and 〈Aut(N ),N〉 are isomorphic. Given an ω-categorical transitive structure M,
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one selects a conjugacy class C in Aut(M) and a conjugacy invariant equivalence
relation E on C that is ∀∃ definable in the language of groups, so that the permu-
tation groups 〈Aut(M), C/E〉 and 〈Aut(M),M〉 are isomorphic. If such C and E
can be found, M is said to have a weak ∀∃ interpretation. Generally (but not nec-
essarily) C consists of automorphisms having a single fixed point and E is “having
the same fixed point”. So an element of M is identified with the equivalence class
of automorphisms that fix it. When M is not transitive, a weak ∀∃ interpretation
for M consists of a weak ∀∃ interpretation for each orbit of Aut(M) on M. Let us
state the formal definitions (to be found in [13]).

Let G be a group acting transitively on the countable set M , and let E be a
G-invariant equivalence relation on M , i.e. such that

∀ a, b ∈ M, ∀ g ∈ G aEb ⇒ agEbg.

Then G has a natural action on the set of equivalence classes M/E, that is, (a/E)g =
(ag)/E, where a/E is the equivalence class of a ∈ M .

Let now ~g = 〈g1, . . . , gn〉 ∈ Gn, and let φ(~g, x, y) be a formula in the language of
groups with parameters ~g. Let C = gG

1 be the conjugacy class of g1 ∈ G. Then φ is
an ∀∃-equivalence formula for G if:

– φ is ∀∃;
– Group theory ` ∀ū(φ(ū, x, y) is an equivalence relation on the conjugacy class

of u1);
– for given ḡ, φ(ḡ, x, y) defines a conjugacy invariant equivalence relation on C.

We shall write Eφ for the equivalence relation defined by φ†.

Definition 1.1 Weak ∀∃ interpretation, transitive case. Let M be an ω-
categorical structure such that Aut(M) acts transitively on M. A weak ∀∃ in-
terpretation for M is a triple 〈φ,~g, τ〉, where φ is an ∀∃-equivalence formula, ~g ∈
Aut(M)n, τ is an isomorphism between the permutation groups 〈Aut(M), C/Eφ〉
and 〈Aut(M),M〉, that is, τ : C/Eφ → M is a bijection such that for all g, h ∈
Aut(M)

[τ(h/Eφ)]g = τ(hg/Eφ).

By the Ryll-Nardzewski theorem, if M is ω-categorical then Mn is partitioned
into a finite number of orbits of Aut(M), for every n ∈ N. In particular, M
is partitioned into finitely many orbits, corresponding to 1-types, and Aut(M)
acts transitively on each of them. We can thus extend the definition of a weak ∀∃
interpretation to the general case when M is not transitive.

Definition 1.2 Weak ∀∃ interpretation. Let M be an ω categorical structure
with 1-types P1, . . . , Pn. A weak ∀∃ interpretation for M is a tuple 〈~φ,~g, ~τ〉,
where ~φ = (φ1, . . . , φn) are ∀∃ equivalence formulae, ~g = (~g1, . . . , ~gn) are tuples of
elements of Aut(M), ~τ = (τ1, . . . , τn) are maps such that each triple 〈φi, ~g

i, τi〉 is a
weak ∀∃ interpretation for the structure induced on Pi.

†Rubin’s original definition of an ∀∃ equivalence formula φ requires φ to define an equivalence
relation that is conjugacy invariant in all groups. However, it is not difficult to see that Rubin’s
theorem below works under the weaker assumption that the equivalence relation defined by φ is
conjugacy invariant in the given group.
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We can now state Rubin’s main result.

Theorem Rubin, 1987. Let K be the class of ω-categorical structures without
algebraicity. Let M ∈ K have a weak ∀∃-interpretation, and let N ∈ K be such
that Aut(M) ∼= Aut(N ) as pure groups. Then 〈Aut(M),M〉 ∼= 〈Aut(N ),N〉, that
is, M and N are bi-definable.

Dropping the assumption of absence of algebraicity, a weak ∀∃-interpretation
permits reconstruction up to bi-interpretability ([13], p. 227):

Proposition 1.3. Let M, N be ω-categorical and let M have a weak ∀∃ in-
terpretation. Then: if Aut(M) ∼= Aut(N ), M and N are bi-interpretable.

Remark 1.4. In this paper we work with a slight generalisation of Rubin’s
definition of weak ∀∃ interpretation. First, we allow the conjugacy class to be a
conjugacy class on tuples from the group, i.e. of the form C = (g1, . . . , gn)G. Sec-
ond, we do not require that all the 1-types of M should have such a weak ∀∃
interpretation; merely that there are 1-types P1, . . . , Pr of M each of which has a
weak ∀∃ interpretation via a conjugacy class of tuples as above, such that

(i) M⊆ dcl({x : P1(x) ∨ . . . ∨ Pr(x)}), and
(ii) Aut(M) is faithful and closed in its action on {x : P1(x) ∨ . . . ∨ Pr(x)}.

From now on in this paper, “weak ∀∃ interpretation” is used in this more gen-
eral sense. Rubin’s argument works for conjugacy classes of tuples, and it follows
that if M and N are ω-categorical with isomorphic automorphism groups, and
M has a weak ∀∃ interpretation in this more general sense, then M and N are
bi-interpretable.

We shall write GL(V ) and PG(V ) for GL(ω, q) and PG(ω, q) respectively, and
similarly for symplectic, unitary and orthogonal groups and their projective ver-
sions.

The theorem we prove is the following:

Theorem. Let V be an ω-dimensional vector space over a finite field Fq, and let
M be an ω-categorical structure with domain V and such that one of the following
holds:

(i) PGL(V ) ≤ Aut(M) ≤ PΓL(V )
(ii) PSp(V ) ≤ Aut(M) ≤ PΓSp(V )
(iii) PU(V ) ≤ Aut(M) ≤ PΓU(V )
(iv) PO(V ) ≤ Aut(M) ≤ PΓO(V )

Then M has a weak ∀∃ interpretation.

The proof is contained in 2.2, 2.4, 3.11, 3.12, 4.6, 4.7, 4.12, 4.21, 4.25, 4.27.
It should be mentioned that reconstruction results were already known for the

above permutation groups, since they have the small index property [7]. What
is new is that these structures have weak ∀∃ interpretations, and, in the case of
spaces with forms, it may be new even that they are parameter-interpretable in
their automorphism groups. In [15], Tolstykh uses techniques similar to those in
Section 3 below to prove that the projective space PG(V ) with the incidence re-
lation is interpretable without parameters in all of ΓL(V ), PGL(V ), PΓL(V ) and



4 s. barbina

GL(V ). Tolstykh’s main result that PG(V ) is interpretable in PGL(V ) is based on
the definability in PGL(V ) of pairs of projective images of extremal involutions
having a unique mutual subspace of V . Our results differ from Tolstykh’s in that
we provide an interpretation with parameters which yields reconstruction up to
bi-interpretability, and we do so also in the case of spaces with forms.

The paper contains several results which we hope will have other applications.
In particular, Proposition 2.2 and Lemma 2.4 give a method for lifting weak ∀∃
interpretations from closed normal subgroups.

2. Preliminaries

Let V be a countably infinite dimensional vector space over a finite field F .
Then V is determined up to isomorphism by its dimension, so it is an ω-categorical
structure, and so are the symplectic, unitary and orthogonal spaces (V, β,Q) (where
β is a sesquilinear form and Q the associated quadratic form in the orthogonal
case). The projective spaces corresponding to these spaces are also ω-categorical.
We shall produce weak ∀∃ interpretations for various groups acting on PG(V )
and on projective spaces with forms. We concentrate on the reconstruction of the
projective spaces, rather than the vector space itself, because reconstruction for
V via a weak ∀∃ interpretation cannot be obtained in general, as Lemma 2.1 will
show. Below we take Aut(V ) to be the general linear group GL(V ). The following
argument applies for any ω-categorical structure M such that Aut(M) is transitive
with non-trivial centre.

Lemma 2.1. Let V be as above, and suppose F 6= F2. Then there is no weak ∀∃
interpretation for 〈GL(V ), V 〉.

Proof. Assume for a contradiction that 〈τ, C, φ〉 is a weak ∀∃ interpretation for
〈GL(V ), V 〉, where C = (g1, . . . , gn)GL(V ), so that

τ : 〈GL(V ), C/Eφ〉 ∼= 〈GL(V ), V 〉.
Let v = τ((g1, . . . , gn)/E).

Consider a central element g ∈ Z(GL(V )), g 6= idGL(V ). So g = λidGL(V ) for some
λ ∈ F \ {0}, λ 6= 1. Then ((g1, . . . , gn)/E)g = (g1, . . . , gn)/E, yet vg = λv 6= v. So
g fixes (g1, . . . , gn)/E but not τ((g1, . . . , gn)/E), which is a contradiction.

The proof of Lemma 2.1 suggests that the problem with a weak ∀∃ interpretation
for 〈GL(V ), V 〉 is created by scalars, so it is natural to turn our attention to the
projective space PG(V ), whose domain is the set of one-dimensional subspaces of
V . There are various closed groups acting on PG(V ). The most natural group
to consider is PGL(V ). We have PGL(V ) £ PΓL(V ), where PΓL(V ) is the group
of projective semilinear transformations on V , which is also closed and hence the
automorphism group of a structure with domain PG(V ).

Recall that if G ≤ Sym(Ω) is a closed subgroup of the full symmetric group
of a countable set Ω, we can impose a canonical structure O on Ω in a canonical
language L, where L contains an n-ary relation symbol R∆ for each orbit ∆ of G
on Ωn. If G acts oligomorphically on Ω, as in our case, the canonical structure is
the structure on Ω whose 0-definable relations are determined by the action of the
automorphism group. Any structure on Ω with G as automorphism group has the
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same 0-definable relations as the canonical structure. We shall henceforth assume
that the structures we are working with are the canonical ones, determined by the
action of the groups considered, and thus we shall not specify the language.

Our aim is to obtain a weak ∀∃ interpretation for all the structures living on
PG(V ) determined by those closed groups H acting on PG(V ) such that PGL(V ) ≤
H ≤ PΓL(V ). These include PGL(V ), PΓL(V ) and some intermediate subgroups
of PΓL(V ) which form a normal series. Propositions 2.2 and Lemma 3.12 below
will ensure that it suffices to find a weak ∀∃ interpretation for the structure deter-
mined by PGL(V ) in order to have interpretations for the whole range of structures
between 〈PGL(V ), PG(V )〉 and 〈PΓL(V ), PG(V )〉.

Our result on PG(V ) rests on the definition of weak ∀∃ interpretation generalized
to conjugacy classes on tuples, mentioned in remark 1.4. Our weak ∀∃ interpretation
will be based on a conjugacy class on pairs of automorphisms, where elements in
each pair share a unique common fixed point. Moreover we shall work with various
closed subgroups of Sym(PG(V )), and for this we need the facts that follow.

Proposition 2.2. Let G = Aut(M), M an ω-categorical structure, and let
H ¢ G be a closed subgroup which is oligomorphic and transitive on M and ∃
definable in G. Suppose 〈H,M〉 has a weak ∀∃ interpretation 〈H,C/E〉 where

(i) C ⊆ Hn consists of n-tuples of automorphisms 〈g0, . . . , gn〉 having the same
fixed space, that is, fix(g0) = fix(g1) = . . . = fix(gn);

(ii) the equivalence relation E on C is defined by an existential formula φ(x, y, h̄);
(iii) ḡEk̄ if and only if fix(gi) = fix(ki) for i = 0, . . . , n;
(iv) the bijection τ takes 〈g0, . . . , gn〉/E to m ∈ fix(g0).

Then 〈G,M〉 has a weak ∀∃ interpretation.

Proof. For ease of notation, we shall take n = 2. Let C = 〈h0, h1〉H be the
conjugacy class involved and φ be the existential formula defining the equivalence
relation E on C, so that

τ : 〈H, 〈h0, h1〉H/E〉 ∼= 〈H,M〉.
Let Ĉ = 〈h0, h1〉G. By normality of H, Ĉ ⊆ H ×H. We would like to define Ê

on Ĉ so that there is an isomorphism

τ̂ : 〈G, Ĉ/Ê〉 ∼= 〈G,M〉.
The obvious choice is to identify elements of Ĉ which have the same fixed space in
M. We know by hypothesis that elements of C, hence of Ĉ, have the same fixed
points in their action on M, hence the same happens in their action on C/E. So
we can define Ê by identifying 〈g0, g1〉, 〈k0, k1〉 ∈ Ĉ whenever their fixed points in
the action on C/E are the same, that is

〈g0, g1〉Ê〈k0, k1〉 iff ∀〈x0, x1〉 ∈ C( (〈x0, x1〉g0E〈x0, x1〉 ∧ 〈x0, x1〉g1E〈x0, x1〉)

↔ (〈x0, x1〉k0E〈x0, x1〉 ∧ 〈x0, x1〉k1E〈x0, x1〉)).
Note that if 〈g0, g1〉, 〈k0, k1〉 ∈ Ĉ, then 〈x0, x1〉gi and 〈x0, x1〉ki are in C, so Ê is

defined. By its form, Ê is an equivalence relation in any group, and it is G-invariant.
We claim further that Ê is ∀∃ definable in G in the language of groups.

Let ψ be an ∃ formula defining H. Then C is also ∃ definable (with parameters
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h0, h1) via the formula

χ(x0, x1, h0, h1) ≡ ∃y(ψ(y) ∧ 〈x0, x1〉 = 〈h0, h1〉y).

Let x̄ = 〈x0, x1〉. Now it is easy to define Ê by

φ̂(x̄, ȳ, h0, h1) ≡ ∀z̄(χ(z̄) → ((z̄x0Ez̄ ∧ z̄x1Ez̄) ↔ (z̄y0Ez̄ ∧ z̄y1Ez̄)).

The fact that E is ∃ definable guarantees that Ê is ∀∃ definable.

Remark 2.3. We shall use Proposition 2.2 with n = 1 when treating spaces
with forms. The contents of Lemma 3.12 below is similar and is needed for 〈PGL(V ), PG(V )〉.

When choosing H to be ∃ definable in the hypotheses of the previous Proposition,
we have in mind the case when H contains a generic automorphism, that is,
an automorphism which lies in a comeagre conjugacy class. If so, the following
definability result holds.

Lemma 2.4. Let G be a Polish group, H ¢ G contain an element h generic in
H. Then H is ∃ definable in G.

Proof. Let CH = hH be the comeagre conjugacy class of h. First, as is well
known, any element k ∈ H can be written as the product of two generics, as C
comeagre implies C ∩ kC 6= ∅. Then choose g0 ∈ C ∩ kC, so that g0 = kg1 for some
g1 ∈ C. Then k = g0g

−1
1 . Since C = C−1, g0, g1 ∈ C as required.

Consider now the conjugacy class CG of h in G. Since CH ⊆ CG every element of
H is a product of two elements of CG, and CG is ∃ definable in G with parameter h.
So we have H ⊆ CGCG. By normality of H, CG ⊆ H so we can define H = CGCG.

3. A weak ∀∃ interpretation for PG(V )

We shall define a conjugacy class on pairs Ĉ ⊂ PGL(V ) × PGL(V ) and an
equivalence relation E on C, ∀∃ definable in the language of groups with parameters
such that

〈PGL(V ), PG(V )〉 ∼= 〈PGL(V ), Ĉ/E〉
as permutation groups. Given the extension of Rubin’s definition in [13] to weak
∀∃ interpretations defined with a conjugacy class on a tuple, we shall obtain a weak
∀∃ interpretation for PGL(V ) acting on PG(V ). By Lemma 3.12 below, a weak ∀∃
interpretation for 〈PGL(V ),PG(V )〉 suffices to cover all the structures on PG(V )
determined by those closed groups H such that PGL(V ) £ H £ PΓL(V ). Since
PΓL(V )/PGL(V ) is a finite cyclic group, these groups are closely related.

3.1. Transvections

Definition 3.1. A transvection is τ ∈ GL(V ) such that there are a linear
functional u in the dual space V ′ and a vector d ∈ V \ {0} such that

– dτ = d
– xτ = x + (xu)d for all x ∈ V
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We shall write τd,u for the transvection above. We shall call 〈d〉 the direction of
τ .

The linear functional u will define a hyperplane U of equation xu = 0 and
τ fixes U pointwise. Also, dτ = d, hence d ∈ U . Given a transvection τ , we shall
indicate the direction of τ by dτ , and the fixed hyperplane by Uτ . Note that different
transvections might have the same direction and the same fixed hyperplane. In fact
the following hold:

Proposition 3.2. Let λ be a scalar, u, u′ nonzero linear functionals and d, d′

nonzero vectors. Then
(i) τλd,u = τd,λu

(ii) τd,u = τd′,u′ if and only if there is a nonzero scalar µ such that d′ = µd and
u′ = µ−1u.

Proof. By direct calculation, using the formula defining a transvection.

We also recall the following facts about transvections (see [3] and [12]):

Lemma 3.3. If g ∈ GL(V ) and τd,u ∈ GL(V ) is a transvection, τg
d,u = τdg,g−1u.

[3] 2.4.3.

Proposition 3.4. There is a conjugacy class T in GL(V ) consisting of all the
transvections.

Proof. [3] 2.4.4.

Proposition 3.5. Let τ and σ be nontrivial transvections in GL(V ). Then τσ
is a transvection if and only if Uτ = Uσ or 〈dτ 〉 = 〈dσ〉.

Proof. [12] 1.17.

Lemma 3.6. The mapping ̂ : GL(V ) → PGL(V ) which takes g ∈ GL(V ) to
the mapping ĝ defined by

〈v〉ĝ := 〈vg〉
is a group homomorphism which is continuous and open.

Proof. It is easy to check that ̂ is a group homomorphism. To prove that ̂
is continuous, consider a basic open set in PGL(V ), say

Û = {ĝ ∈ PGL(V ) : 〈vi〉ĝ = 〈wi〉, i = 1, . . . , n}.
The inverse image of Û is

U =
⋃

αi,βi∈F\{0}
{g ∈ GL(V ) : αiv

g
i = βiwi, i = 1, . . . n}

which is a union of open sets, hence it is open.
Consider φ ∈ StabPGL(V )(〈v1〉 . . . 〈vn〉). By reordering the vi if necessary, let

{v1, . . . , vm} be a maximally independent subset of {v1, . . . , vn}. Extend {v1, . . . , vm}
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to a basis B = {v1, . . . , vm, wm+1, . . .} of V . Choose any g ∈ GL(V ) such that
ĝ = φ, and consider B′ = {v1, . . . , vm, wg

m+1, w
g
m+2, . . .}. Clearly B′ is also a basis,

so, by transitivity of GL(V ) there is h ∈ GL(V ) taking B to B′, ĥ = φ and h ∈
StabGL(V )(v1, . . . , vn). Hence φ ∈ ̂StabGL(V )(v1 . . . vn). Then StabPGL(V )(〈v1〉 . . . 〈vn〉) ⊆
̂StabGL(V )(v1 . . . vn), and the image of a basic open set is again open.

Definition 3.7. We define τ̂ ∈ PGL(V ) to be a projective transvection if
it is the image under ̂ of some transvection τ ∈ GL(V ).

Since ̂ is a homomorphism, by 3.4 projective transvections form a complete
conjugacy class T̂ in PGL(V ).

Lemma 3.8.
(i) The preimage of the projective transvection τ̂ under ̂ contains all nonzero

scalar multiples of τ and nothing else.
(ii) A scalar multiple of a transvection is not a transvection. In particular, if

τ, σ are transvections then λτ = σ ⇐⇒ λ = 1 and τ = σ.

Proof. [12] 1.15.

Let τ̂ ∈ PGL(V ) be a projective transvection, so that there is τ ∈ T whose
image under ̂ is τ̂ . Then such a τ is unique and we shall call it the transvection
associated with τ̂ . Hence to each projective transvection τ̂ there remain associ-
ated a unique fixed hyperplane Uτ̂ and a unique direction 〈dτ̂ 〉, which are those of
the associated transvection. In what follows we shall always assume that τ is the
transvection associated with τ̂ and that Uτ , 〈dτ 〉 are the corresponding hyperplane
and direction. From these considerations it is easy to obtain a projective version of
Proposition 3.5:

Proposition 3.9. Let τ̂ , σ̂ be non trivial projective transvections. Then τ̂ σ̂ is
a transvection if and only if Uτ = Uσ or 〈dτ 〉 = 〈dσ〉.

Proof. [12], 1.23

3.2. The interpretation

We shall select a conjugacy class of pairs of projective transvections Ĉ ⊆ PGL(V )×
PGL(V ) so that transvections in the same pair have the same direction and differ-
ent fixed hyperplane, and an equivalence relation E on Ĉ identifying pairs having
the same direction.

Proposition 3.10. Let (σ̂, σ̂′) ∈ PGL(V )×PGL(V ) be two transvections such
that 〈dσ〉 = 〈dσ′〉 and Uσ 6= Uσ′ . Then for all 〈d〉 ∈ PG(V ) there are ĝ ∈ PGL(V )
and a pair (τ̂ , τ̂ ′) of transvections such that (σ̂, σ̂′)ĝ = (τ̂ , τ̂ ′) and 〈d〉 = 〈dτ 〉 = 〈dτ ′〉,
Uτ 6= Uτ ′ .

Proof. Clearly, if (σ̂, σ̂′) is such that 〈dσ〉 = 〈dσ′〉 and Uσ 6= Uσ′ , and ĝ ∈
PGL(V ) is such that σ̂ĝ = τ̂ , (σ′)g = τ ′, then (by 3.3) 〈dτ 〉 = 〈dτ ′〉 and Uτ 6= Uτ ′ .
Since GL(V ) is transitive on the points of PG(V ), given any 〈d〉 ∈ PG(V ) we can
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find g ∈ GL(V ), hence ĝ ∈ PGL(V ), such that 〈dσ〉ĝ = 〈d〉. Then (σ̂, σ̂′)ĝ will be
our required pair.

This lemma ensures that all points of PG(V ) are represented by at least a pair in
Ĉ = {(σ̂, σ̂′)ĝ : ĝ ∈ PGL(V )}. We can now obtain an ∀∃ formula in the language of
groups which defines pairs of transvections representing the same point of PG(V ).

Proposition 3.11. Let (ρ̂, ρ̂′) and (σ̂, σ̂′) be in Ĉ as defined above. Then

(ρ̂, ρ̂′)E(σ̂, σ̂′) iff 〈dρ〉 = 〈dσ〉
is a conjugacy invariant equivalence relation on Ĉ, ∃ definable with parameters in
PGL(V ). Hence there is a weak ∀∃ interpretation for 〈PGL(V ), PG(V )〉.

Proof. Suppose (σ̂, σ̂′) is in Ĉ (so 〈dσ〉 = 〈dσ′〉 and Uσ 6= Uσ′). We claim that
〈dσ〉 = 〈dρ〉 if and only if the products σ̂ρ̂ and σ̂ρ̂′ are both projective transvections.

Clearly 〈dσ〉 = 〈dρ〉 implies that σ̂ρ̂ and σ̂ρ̂′ are projective transvections. To
prove the converse, suppose for a contradiction that σ̂ρ̂ and σ̂ρ̂′ are projective
transvections, yet 〈dσ〉 6= 〈dρ〉 (hence also 〈dσ〉 6= 〈dρ′〉). Then by 3.9 σ̂ρ̂ is a
transvection if and only if Uσ = Uρ. Likewise, σ̂ρ̂′ is a transvection if and only if
Uσ = Uρ′ . But then Uρ = Uρ′ , contradicting (ρ̂, ρ̂′) ∈ Ĉ. Hence the formula

φ(x, x′, y, y′) ≡ xy is a projective transvection and xy′ is a projective transvection

defines the equivalence relation E in the language of groups. By 3.3 E is conjugacy
invariant. Note that the property of being a projective transvection is definable
with a single parameter (say σ̂) by the existence of a conjugating element to σ̂ (by
3.4), so φ is in fact

∃w∃z ((xy)w = σ̂ ∧ (xy′)z = σ̂),

which is an existential formula. It is then easy to see that

ψ(x, x′, y, y′) ≡ φ(x, x′, y, y′) ∧ ‘φ(x, x′, y, y′) defines an equivalence relation on Ĉ’

is an ∀∃ equivalence formula (with parameters σ̂, σ̂′ such that (σ̂, σ̂′) ∈ Ĉ).
Then 〈ψ(x, x′, y, y′), σ̂, σ̂′, τ〉 is a weak ∀∃ interpretation for 〈PGL(V ), PG(V )〉,

where τ : Ĉ/E → PG(V ) is defined by τ((ρ̂, ρ̂′)/E) = 〈dρ〉.

Lemma 3.12. Let G be a closed group and such that PGL(V ) ≤ G ≤ PΓL(V ).
Then 〈G, PG(V )〉 has a weak ∀∃ interpretation.

Proof. Let Ĉ = (σ̂, σ̂′)PGL(V ) be the conjugacy class on pairs of transvections
which gives the weak ∀∃ interpretation of Proposition 3.11 above. Since PGL(V )¢G,
we have Ĉ ⊆ (σ̂, σ̂′)G ⊆ PGL(V )× PGL(V ). Hence (σ̂, σ̂′)G is again made of pairs
of transvections (ρ̂, ρ̂′) such that 〈dρ〉 = 〈dρ′〉 but Uρ = Uρ′ . Then we define Ê on
(σ̂, σ̂′)G with exactly the same formula as in 3.11, so that (ρ̂, ρ̂′)Ê(σ̂, σ̂′) iff 〈dρ〉 =
〈dσ〉.

gle H, M〉.
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4. Spaces with forms

Let V be a vector space as above, and suppose σ ∈ Aut(F ). Let us recall some
basic definitions and notation. A sesquilinear form on V is a map β : V ×V → F
such that for all ui, vi ∈ V , a, b ∈ F

(1) β(u1 + u2, v) = β(u1, v) + β(u2, v)
(2) β(u, v1 + v2) = β(u, v1) + β(u, v2)
(3) β(au, bv) = abσβ(u, v)
The form β is said to be
– alternating if σ = 1 ∈ Aut(F ) and β(v, v) = 0 for all v in V ;
– symmetric if σ = 1 ∈ Aut(F ) and β(u, v) = β(v, u) for all u, v in V ;
– hermitian if σ 6= 1, σ2 = 1 ∈ Aut(F ) and β(u, v) = σ(β(v, u)) for all u, v in

V .
If β is alternating then β(u, v) = −β(v, u) for all u, v ∈ V .

If X is a subspace of V we define X⊥ := {u ∈ V : ∀x ∈ X β(u, x) = 0}. Note
that X⊥ ≤ V . The radical of V is V ⊥. If U ≤ V , Rad(U) = U ∩ U⊥. The form β
is said to be nondegenerate if Rad(V ) = {0}.

A quadratic form on V is a function Q : V → F such that

Q(av) = a2Q(v) for all a ∈ F, v ∈ V, and

β(u, v) := Q(u + v)−Q(u)−Q(v)

is a bilinear form (i.e. sesquilinear with σ = 1). Then β is symmetric, and it is
called the bilinear form associated with Q. By the definition, Q determines β and
β(u, u) = 2Q(u). If char(F ) = 2, we get that β(u, u) = 0 for all u ∈ V .

The forms defined above give rise to three kinds of spaces:
– the symplectic space (V, β), where β is alternating nondegenerate;
– the orthogonal space (V, β,Q), where β is symmetric nondegenerate;
– the unitary space (V, β), where β is hermitian nondegenerate.

If V is countably infinite dimensional and F is finite then each form is unique, so
the space (V, β) is an ω-categorical structure. Unlike the vector space case, cate-
goricity does not hold in uncountable dimension. Our convention about adopting
the canonical language will hold for spaces with forms.

Definition 4.1. If (V1, β1, Q1) and (V2, β2, Q2) are F vector spaces as above
(both symplectic or both orthogonal or both unitary) then f : V1 → V2 is a linear
isometry if f is linear and for all u, v ∈ V1

β2(uf, vf) = β1(u, v) and Q2(vf) = Q1(v).

We shall denote the isometry group of the space (V, β, Q) by O(V, β,Q). This
notation covers the symmetric, the unitary and the orthogonal groups. We shall
write Sp(V ) and PSp(V ) for the symplectic and projective symplectic groups re-
spectively. O(V ), PO(V ), U(V ) and PU(V ) will denote the orthogonal, projective
orthogonal, unitary and projective unitary groups respectively.

We now need more definitions:

Definition 4.2.
(i) A non-zero vector v ∈ V is isotropic if β(v, v) = 0;
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(ii) a subspace W ⊆ V is totally isotropic if W ⊆ W⊥;
(iii) a non-zero vector v is singular if Q(v) = 0 (note that in odd characteristic

a vector is singular if and only if it is isotropic);
(iv) W ⊆ V is totally singular if Q(w) = 0 for all w ∈ W ;
(v) W ⊆ V is non-degenerate if W ∩W⊥ = {0};
(vi) if V = U ⊕ V and β(u, v) = 0 for all u ∈ U , v ∈ V , we say that V is an

orthogonal direct sum of U and V , and we write U ⊥ V .

Definition 4.3. A pair of vectors u, v such that u, v are both isotropic and
β(u, v) = 1 is called a hyperbolic pair, and the line 〈u, v〉 in PG(V ) is a hyper-
bolic line. In the presence of a quadratic form Q, we also require that Q(u) =
Q(v) = 0.

We shall now state Witt’s theorem, which is a major result concerning spaces
with forms and which we shall repeatedly need:

Theorem 4.4 Witt. Let V be a nondegenerate symplectic, orthogonal or unitary
space, where V has dimension ω over the finite field F , and let U ≤ V be a finite
dimensional subspace. Suppose that g : U → V is a linear isometry. Then there is
a linear isometry h : V → V such that ug = uh for all u ∈ U .

Proof. [14], 7.4.

In particular any isomorphism between two non degenerate subspaces of V can
be extended to a full isomorphism.

4.1. Generics in PO(V, β, Q)

In this section we shall establish some facts about isometry groups which are
needed later for finding weak ∀∃ interpretations for spaces with forms.

We shall think of (V, β, Q) as the Fräıssé limit of finite dimensional spaces having
a hyperbolic basis. We refer the reader to the literature for proofs that, when the
underlying field is finite, the even dimensional vector space U can be equipped with
an orthogonal and unitary form admitting a hyperbolic basis. We shall show that
O(V, β, Q) contains a generic automorphism, so that 2.2 applies (by 2.4).

The following is well known, and it is central to the fact that vector spaces over
finite fields with non degenerate bilinear forms are smoothly approximable (cf. [4]).

Lemma 4.5. Let V be a countably infinite dimensional vector space over a finite
field F . Let β be a nondegenerate alternating, symmetric or hermitian form on
V . Suppose that U ≤ V is a finite dimensional subspace. Then there is a finite
dimensional Ū ≤ V such that Ū is nondegenerate and U ≤ Ū .

We can now prove the existence of a generic automorphism.

Lemma 4.6. The isometry group O(V, β,Q) contains a generic automorphism.

Proof. Let G = O(V, β, Q), and let P = {p : V → V s.t. p is a partial finite
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isometry}. By theorem 2.1 in [16], it suffices to find a cofinal subset of P which
satisfies the amalgamation property and the joint embedding property.

Consider the set

E := {p ∈ P : dom(p) has a hyperbolic basis}.
It is clear that E is closed under conjugacy. For cofinality, let p ∈ P and consider
U = 〈dom(p)∪ ran(p)〉. By 4.5, there is Ū ⊇ U such that Ū is nondegenerate. Since
we think of V as the Fräıssé limit of finite dimensional spaces having a hyperbolic
basis, we may assume that Ū has such a basis. By Witt’s thorem we can extend p
to an isometry p̄ of V . Then p̄|Ū ∈ E and p ⊆ p̄|Ū .

For the amalgamation property, suppose that h, g1, g2 ∈ E and let U, V1, V2 be
dom(h), dom(g1) and dom(g2) respectively. Suppose further that αi : 〈U, h〉 →
〈Vi, gi〉, i = 1, 2, are embeddings in E. We want to find g ∈ E, with dom(g) = W ,
and γi : 〈Vi, gi〉 → 〈W, g〉, γi ∈ E, such that α1γ1 = α2γ2. By identifying U with
αi(U) we may assume that α1 = id and α2 = id, so that 〈U, h〉 ⊆ 〈Vi, f1〉, i = 1, 2.
Choose a hyperbolic basis B = {e1, f1, . . . , en, fn} for U , where each pair (ei, fi)
is hyperbolic. Extend B to hyperbolic bases B1 = B ∪ {en+1, fn+1, . . . , er, fr} for
V1 and B2 = B ∪ {e′n+1, f

′
n+1, . . . , e

′
s, f

′
s} for V2. Let W = 〈B1 ∪ B2〉, g = g1 ∪ g2

and define β(ei, e
′
j) = β(fi, f

′
j) = β(ei, f

′
j) = β(e′j , fi) = 0 for i = n + 1, . . . , r

and j = n + 1, . . . , s. It is easy to check that g respects β on this basis, hence
g ∈ O(W,β, Q) is the required extension of g1, g2.

The joint embedding property is proved similarly.

Proposition 4.7. Let f be a generic automorphism of G ≤ O(V, β,Q). Then
the projective image f̂ is generic in Ĝ.

Proof. Let C = gG be the comeagre conjugacy class of g. Let Z = Z(G) ≤ {αI :
α ∈ F, I = idG} be the centre of G.

First, we claim that for any z ∈ Z, zC = C. Indeed, clearly zC is comeagre
(as translation by z is a homeomorphism of G), and zC = {zf−1gf : f ∈ G} =
{f−1zgf : f ∈ G} = (zg)G. Hence zC is a conjugacy class. As there is a unique
comeagre conjugacy class, zC = C. Hence ZC :=

⋃
z∈Z zC = C.

It follows that if C ⊇ ⋂
i∈ω Di, where each Di is dense and open, then C ⊇⋂

i∈ω ZDi, and each ZDi is also dense and open. By 3.6, the sets ẐDi are dense
and open.

We argue that ̂⋂
i∈ω ZDi =

⋂
i∈ω ẐDi. For ⊆, if x ∈ ̂⋂

i∈ω ZDi, then there is
h ∈ ⋂

i∈ω ZDi with x = ĥ. But now h ∈ ZDi for all i, so x ∈ ẐDi for all i, so
x ∈ ⋂

i∈ω ẐDi.
For the reverse inclusion, suppose x ∈ ⋂

i∈ω ẐDi, with x = ĥ. Then for all i,
x ∈ ẐDi, so for all i, h ∈ ZDi. Hence h ∈ ⋂

i∈ω ZDi, so x ∈ ̂⋂
i∈ω ZDi.

So Ĉ ⊇ ̂⋂
i∈ω ZDi =

⋂
i∈ω ẐDi. Hence Ĉ contains a countable intersection of

dense open sets, so it is comeagre, i.e. ĝ is a generic.

Hence PSp(V ), PU(V ) and PO(V ) all contain a generic automorphism. By 2.4,
this means that they are ∃ definable in PΓSp(V ), PΓU(V ) and PΓO(V ) respectively.
Since they are also normal in these groups, they satisfy the hypothesis of 2.2, and
hence weak ∀∃ interpretations based on existential formulae for each of them will
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suffice for reconstructing all the structures on PG(V ) induced by groups respecting
forms.

Remark 4.8. Propositions 4.6 and 4.7 are implicit in [5]. Theorem 4.1 in [5]
states that for any affine cover M there is n such that the set Λn of all finite n-
saturated envelopes in M forms an amalgamation base. It is easy to see (from the
definition of an amalgamation base) that the set P of all pairs (A,α), with A ∈ Λn

and α ∈ Sym(A) extendible to an automorphism of M , forms a cofinal subset of all
finite partial automorphisms satisfying the properties of Theorem 2.1 in [16]. Thus
4.6 and 4.7 also follow from [5].

4.2. The interpretation for Sp(V )

The following facts will yield a weak ∀∃ interpretation for PSp(V ) acting on
PG(V ):

Proposition 4.9. Sp(V ) is transitive on the points of PG(V ).

Proof. This is a consequence of Witt’s theorem.

Lemma 4.10. If τ ∈ Sp(V ) is a transvection then Uτ = d⊥.

Proof. Let τ = τd,u where u ∈ V ∗. Then:

τd,u ∈ Sp(V ) ⇐⇒ ∀v, w ∈ V β(v, w) = β(vτd,u, wτd,u)
= β(v + (v)ud,w + (w)ud)
= β(v, w) + (v)uβ(d,w) + (w)uβ(v, d)

Hence we need (v)uβ(d,w)+(w)uβ(v, d) = 0 for all v, w ∈ V . We can choose v ∈ V
with β(d, v) = 1. Then for all w we have (w)u = (v)uβ(d,w), that is ker(u) = u⊥.

Proposition 4.11. There is a conjugacy class T = τ
Sp(V )
d,u in Sp(V ) consisting

of symplectic transvections. Moreover, for all 〈v〉 ∈ PG(V ), there is τd′,u′ ∈ T with
〈d′〉 = 〈v〉.

Proof. First note that the conjugate of a symplectic transvection is a symplectic
transvection: let τd,u ∈ Sp(V ) be a transvection, and let g ∈ Sp(V ). Then, by
3.3, τg

d,u = τdg,g−1u. Since ker(u) = d⊥, we have that (ker(u))g = (d⊥)g. But
(ker(u))g = ker(ug−1) and (d⊥)g = (dg)⊥, so τdg,g−1u is a symplectic transvection
as required. The second claim then follows because Sp(V ) is transitive on the points
of PG(V ).

Proposition 4.11 ensures that if we work with Ĉ = τ̂
PSp(V )
d,u , where τ̂d,u is a

projective symplectic transvection, each point in PG(V ) will be represented by at
least one element of Ĉ.

Lemma 4.10 enables us to find a simpler interpretation for PSp(V ) than the one
for PG(V ): since the direction of a transvection determines its fixed hyperplane
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uniquely, we can use Proposition 3.9 to identify those symplectic transvections that
fix the same direction:

Proposition 4.12. Let τ̂ , σ̂ be projective symplectic transvections. Then:

τ̂ σ̂ is a projective symplectic transvection ⇐⇒ 〈dτ 〉 = 〈dσ〉

Proof. This is a direct consequence of 3.9 and 4.10.

It follows that the relation “having the same direction” on the conjugacy class of
projective symplectic transvections is indeed an ∃ definable equivalence relation in
the language of groups.

4.3. A reconstruction result for PU(V ) and PO(V )

Our reconstruction results for the unitary and orthogonal spaces will involve
selecting a suitable subset of V on which U(V ) and O(V ) are closed automorphism
groups, and extending the interpretation to the full domain.

Fact 4.13. The unitary space (V, β) has a basis of isotropic vectors. Moreover,
PU(V ) is transitive on the set of isotropic points of PG(V ).

Proof. [14] pp. 116–117 and Theorem 10.12.

Fact 4.14. There is an orbit P of the orthogonal group O(V ) on (V,Q) which
consists of nonsingular vectors and contains a basis for V .

Proof. It is known that the orthogonal group O(V ) is irreducible in its natural
action on V , so any orbit spans V . In particular if v ∈ V is nonsingular, then
{vg : g ∈ O(V )} consists of nonsingular vectors and it contains a basis, as required.

We now prove that PO(V ) acting on an orbit P̂ of nonsingular points (resp.
PU(V ) acting the set P̂ of isotropic points) is closed, and that PG(V ) = dcl(P̂ ).
We shall use the following fact.

Lemma 4.15. Let M be a first order structure, W a set, and π : M → W
be a finite-to-one surjection whose fibres form an Aut(M)-invariant partition of
M. Let µ : Aut(M) → Sym(W ) be the map defined by wµ(g) = ((w)π−1g)π for
all g ∈ Aut(C) and w ∈ W . Then µ maps closed subgroups of Aut(M) to closed
subgroups of Sym(W ).

Proof. [8], 1.4.2.

Proposition 4.16. Let M be a structure, G = Aut(M) and P ⊆ M be a
G-invariant subset such that M = dcl(P ). Then G is closed on P .

Proof. Suppose that g ∈ G. Then, since P g = P and g is a bijection on M, g is
also a bijection on P .

Recall that G is closed in Sym(P ) if and only if the following holds: if g ∈ Sym(P )
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is such that for all p̄ ∈ Pn there is h ∈ G such that p̄h = p̄g, then g ∈ G. So let
g ∈ Sym(P ) be as in the hypothesis, i.e. g behaves like an element of G on each
finite tuple in P . We want to show that g ∈ G.

Extend g to g′ ∈ Sym(M) as follows: for m ∈ M, let m ∈ dcl(p̄), p̄ ∈ P k, be
defined by the formula φ(x, p̄). Choose h ∈ G agreeing with g on p̄, and extend g
to g′ defined by

mg′ := φ(M, p̄h).

Then g′ is well-defined: if m = φ(M, p̄) and m = ψ(M, q̄), then φ(M, p̄) = ψ(M, q̄)
implies that φ(M, p̄h) = ψ(M, q̄h). It is easy to see that g′ is independent of the
choice of h.

Now let m̄ ∈ Mn, and let ψ be any n-formula. Suppose {mi} = φi(M, p̄i) for
i = 1, . . . , n. For each i = 1, . . . , n there is a 0-definable partial function fi such
that mi = fi(p̄i). Then

M |= ψ(m̄) ⇐⇒ M |= ψ(f1(p̄1), . . . , fn(p̄n))
⇐⇒ M |= ψ(f1((p̄1)h), . . . , fn((p̄n)h))

⇐⇒ M |= ψ(m̄g′).

Hence g′ ∈ Aut(M), as required.

Proposition 4.17. Let (PG(V ), β,Q) be the projective unitary (resp. orthogo-
nal) space, and G = PU(V ) (resp. PO(V )). Let P̂ be the set of isotropic (resp.
an orbit of nonsingular) 1-dimensional subspaces, and O be an orbit of G on
(PG(V ), β, Q). Then O ⊆ dcl(P̂ ). It follows that G is faithful on P̂ .

Proof. Let O be as in the statement. We know that the pre-image P of P̂ under
̂ contains a basis for V , so every v ∈ V is a linear combination of vectors in P . Let
O = 〈v〉O(V,β,Q), and suppose that 〈v〉 = 〈α1v1 + . . . + αrvr〉, αi ∈ F , vi ∈ P . If
f ∈ G fixes 〈v1〉, . . . , 〈vr〉, then v1, . . . vr have finitely many translates in V , hence
v1 + . . . + vr has finitely many translates. So 〈v〉 ∈ acl(〈v1〉, . . . , 〈vr〉). So we have
that O ⊆ acl(P̂ ).

Suppose for a contradiction that there is 〈v〉 ∈ O such that 〈v〉 /∈ dcl(P̂ ). Then,
by a König’s Lemma argument, there is g ∈ GP̂ such that 〈v〉g 6= 〈v〉. But then
GP̂ is normal in G, closed and nontrivial, since it contains g. But, since Theorem
1 in [9] implies that G has no proper non trivial closed normal subgroups, this is a
contradiction.

It follows that if g ∈ GP̂ , then 〈v〉g = 〈v〉 for all 〈v〉 ∈ PG(V ), so g = id, i.e. G
is faithful.

Corollary 4.18. Let P be the set of isotropic vectors in the unitary space
(V, β), resp. an orbit of nonsingular vectors in the orthogonal space (V,O). Then
G = O(V ) (resp. G = U(V )) is closed in its action on P . It follows that the
projective image Ĝ of G is closed in its action on P̂ := {〈v〉 : v ∈ P}.

Proof. By 4.16 and 4.17, G is closed on P . By 4.15 with 〈Aut(M),M〉 = 〈G,P 〉
and W = P̂ , the projective image Ĝ of G is closed in its action on P̂ .

Hence PO(V ) and PU(V ) induce the automorphism group of a structure on an
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orbit of nonsingular 1-subspaces and on the set of isotropic 1-subspaces respec-
tively. We shall start by looking for weak ∀∃ interpretations for the structures
〈PO(V, β, Q), P̂ 〉 and later extend our results to 〈PO(V, β, Q), PG(V )〉.

Fact 4.19. Suppose τd,u is a transvection in GL(V ). Then τd,u ∈ U(V ) if and
only if it is of the form

vτ = v + aβ(v, d)d

where d is isotropic and a ∈ F satisfies a+aσ = 0. In particular, for each isotropic
vector d there is a unitary transvection having direction 〈d〉.

Proof. [14], pp. 118–119.

Projective unitary transvections are defined in the usual way. Note that here, as
in the symplectic case, for a transvection τd,u we have ker(u) = 〈d〉⊥ = d⊥, so our
weak ∀∃ interpretation for 〈PU(V ), P̂ 〉 is based on the same formula as we used in
the symplectic case.

Proposition 4.20. There is a conjugacy class T = τ̂
PU(V )
d,u in PU(V ) such that

for all isotropic 〈v〉 ∈ PG(V ), there is τd′,u′ ∈ T with 〈d′〉 = 〈v〉.

Proof. The proof follows from 4.19.

Proposition 4.21. Let τ̂ , σ̂ be projective unitary transvections. Then

σ̂τ̂ is a unitary projective transvection ⇐⇒ 〈dτ 〉 = 〈dσ〉.

Proof. This is a consequence of the fact that for τd,u ker(u) = 〈d〉⊥ = d⊥ and
of 3.9.

The reconstruction result for the orthogonal space is very similar to the unitary
case, except that when char(F ) 6= 2 there are no transvections in O(V ) so we
use reflections instead, and we need a basis of nonsingular, rather than isotropic,
vectors. Let us deal with the characteristic 2 case first:

Lemma 4.22. If char(F ) = 2, the following hold:
(i) the orthogonal space (V, Q) contains a transvection τ ;
(ii) vτ = v + Q(v)−1β(v, u)u for a nonsingular vector u;
(iii) each nonsingular point in PG(V ) is the centre of a unique transvection.

Proof. [1], 22.3.

So the even characteristic case is treated like the unitary case, except that, by
virtue of 4.22 2. above, there is no need to quotient the conjugacy class of orthogonal
transvections by an equivalence relation. For the general case, we need to define
reflections.

Definition 4.23. A reflection in O(V,Q) is a map of the form

τu(v) = v −Q(u)−1β(v, u)u
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where u is a nonsingular vector. We call 〈u〉 the centre of τu.

Note that τu fixes 〈u〉⊥. Moreover, for every nonsingular vector u ∈ (V, Q) there
is a unique reflection with centre 〈u〉:

vτλu = v −Q(λu)−1β(v, λu)λu

= v − Q(u)−1

λ2
λ2β(v, u)u

= vτu.

Definition 4.24. A projective reflection is an element of PO(V, Q) of the
form τ̂u where τu is a reflection.

It follows easily from the above that for every nonsingular point of PG(V ) there
is a unique projective reflection with centre 〈u〉.

Proposition 4.25. For each orbit P of O(V ) consisting of nonsingular vectors
there is a conjugacy class C ⊆ O(V ) consisting of reflections such that for all
v ∈ P there is a unique reflection in C having centre 〈v〉. It follows that there
is a bijection between the conjugacy class Ĉ ⊆ PO(V ) and the orbit P̂ such that
〈PO(V ), P̂ 〉 ∼= 〈PO(V ), Ĉ〉.

Proof. Let τu ∈ O(V, Q) be a reflection. Then

(v)g−1τug = (vg−1 −Q(u)−1β(vg−1, u)u)g
= v −Q(u)−1β(vg−1, u)ug

= v −Q(ug)−1β(v, ug)ug

= vτug.

So the conjugate by g ∈ O(V ) of a reflection with centre u is a reflection of centre
ug. Since O(V ) is transitive on the orbit P , and by the remark following 4.24, the
claim follows.

The facts above yield a weak ∀∃ interpretation for PO(V ) acting on an orbit P̂
of nonsingular points of PG(V ). It is clear that in this case we do not need to find
an equivalence relation on the conjugacy class considered, since there is naturally
a bijection with the orbit P̂ .

So far we have obtained weak ∀∃ interpretations for 〈PU(V ), P̂ 〉, where P̂ is
the set of isotropic points in the projective unitary space (PG(V ), β), and for
〈PO(V ), P̂ 〉, where P̂ is an orbit of nonsingular points in the orthogonal projec-
tive space (PG(V ), Q). By 4.17, this gives a generalised weak ∀∃ interpretation for
〈PO(V ), PG(V )〉 and 〈PU(V ), PG(V )〉.

Proposition 4.17 gives a weak ∀∃ interpretation in the sense of 1.4 for PO(V )
and PU(V ) acting on PG(V ). In order to lift these interpretations to PΓU(V ) and
PΓO(V ) and to the intermediate closed subgroups, we prove the following extension
of Proposition 4.17.

Proposition 4.26. Let G such that PU(V ) ≤ G ≤ PΓU(V ) (resp. PO(V ) ≤
G ≤ PΓO(V )) be a closed group on the set P̂ of isotropic (resp. on an orbit of
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nonsingular) 1-dimensional subspaces of V . Let O be an orbit of G on PG(V ).
Then O ⊆ dcl(P̂ ). It follows that G is faithful on P̂ .

Proof. For ease of notation, we shall state the argument for PU(V ) ≤ G ≤
PΓU(V ). The case PO(V ) ≤ G ≤ PΓO(V ) is entirely similar. We know that
PU(V ) ¢ PΓU(V ), and that |PΓU(V ) : PU(V )| is finite, therefore |G : PU(V )|
is also finite. Also, G is transitive on P̂ .

We claim that for G acting on PG(V ), O ⊆ acl(P̂ ). By 4.17, we know that for all
p ∈ O there is q̄ ∈ P̄ such that PU(V )q̄ fixes p. We want to prove that p has finitely
many translates under Gq̄. This is equivalent to proving that |Gq̄ : Gq̄p| < ℵ0.
Suppose for a contradiction that there are (gi : i ∈ ω) which all lie in different
cosets of Gq̄p in Gq̄. Then the elements gig

−1
j are all in Gq̄ but not in Gq̄p, hence

they are not in PU(V ). So we get that the gi, i ∈ ω all lie in different cosets of
PU(V ) in G, which contradicts the fact that |G : PU(V )| is finite.

Next we show that O ⊆ dcl(P̂ ). Suppose for a contradiction that O is not de-
finable over P̂ . Then there is g ∈ G, g 6= id such that g|P̂ = id (as in 4.17, by
a König’s lemma argument). It follows that GP̂ is nontrivial. Since P̂ is an orbit,
GP̂ ¢ G. But GP̂ ≤ Gp for any p ∈ P̂ . Since |G : Gp| = |cos(G : Gp)| = |P̂ | = ℵ0,
|G : GP̂ | is infinite. But this is a contradiction, as G has no closed normal subgroups
of infinite index. Indeed, if H ¢G is a closed nontrivial normal subgroup of infinite
index, then H ∩PU(V ) is a proper nontrivial closed normal subgroup of PU(V ), a
contradiction by [9]. Faithfulness of G follows as in 4.17.

Corollary 4.27. If G is a closed group acting on PG(V ) such that PU(V ) ≤
G ≤ PΓU(V ) (resp. PO(V ) ≤ G ≤ PΓO(V )), then 〈G, PG(V )〉 has a generalised
weak ∀∃ interpretation.

Proof. By 4.18, 4.20, 4.21, 4.25, 4.17, there is a weak ∀∃ interpretation for
〈PU(V ), P̂ 〉 (resp. 〈PO(V ), P̂ 〉). Since PU(V ) ¢ PΓU(V ) (resp. PO(V ) ¢ PΓO(V )),
we can apply 2.2 to obtain a weak ∀∃ interpretation for 〈G, P̂ 〉. By 4.26, this yields
a generalised weak ∀∃ interpretation for 〈G, PG(V )〉.

5. A reconstruction result for affine spaces

In what follows we shall give an interpretability result for the general case of a
primitive ω-categorical structure whose automorphism group has an abelian sub-
group which is transitive on the structure. This result applies to the affine group
AGL(V ) of affine transformations of V , and it proves that V as an affine space is
interpretable in AGL(V ). We assume V to be ω-dimensional over a finite field F ,
as before.

Let us recall the basic definitions and notation about the affine group AGL(V ).
An affine transformation on V is a map TM,b of the form

vTM,b := vM + b

where M ∈ GL(V ) and b ∈ V . Then AGL(V ) is the group of affine transformations
on V . The affine group acts on V in the obvious way. Moreover, 〈AGL(V ), V 〉 is an
ω-categorical structure and the action of AGL(V ) on V is primitive and faithful.

The affine transformations of the form TI,b where I is the identity in GL(V )
are called the translations and they form a normal subgroup T(V ) ¢ AGL(V ).
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Also, the multiplicative group T(V ) is isomorphic to the additive group V , so T(V )
is abelian. By identifying TM,0 ∈ AGL(V ) with M ∈ GL(V ) and TI,b ∈ T(V )
with b ∈ V it is easy to see that every element of AGL(V ) can be expressed
uniquely as the product of an element of GL(V ) and an element of V . Moreover,
GL(V ) = StabAGL(V )(0), so GL(V ) ≤ AGL(V ), and we can write

AGL(V ) = T(V )oGL(V )
= V oGL(V ).

We shall give our interpretability result in the general setting of an oligomorphic
primitive permutation group G acting on a countable set X and having an abelian
normal subgroup A. We shall show that then the structure on X is interpretable
in G. This result applies to the affine group if we take G = AGL(V ), A = T(V )
and X = V . We list some folklore facts about the action of G on X. The proofs are
straightforward, and some of them can be found in [2].

Lemma 5.1. If G is faithful and primitive on X and A ¢ G is non trivial, then
A is transitive.

Lemma 5.2. Any transitive abelian permutation group H acting on a set X is
regular.

So if A ¢ G is a non trivial normal subgroup, then A is transitive on X (by 5.1).
If A is also abelian, then by 5.2 A is regular on X.

Proposition 5.3. Let G be a primitive faithful group acting on a set X, and let
A be a non trivial abelian normal subgroup. Let α ∈ X and let Gα be the stabilizer
of α. Then G = AoGα.

We now show that a suitable identification allows us to regard A as a copy of X
in the group G.

Proposition 5.4. Let X, G, A and α be as above. Then

(Gα, X) ∼= (Gα, A),

where Gα acts on A by conjugation.

Proof. Consider the map θ : A → X defined by

θ : 1 → α

θ : g → αg.

We claim θ defines an isomorphism between the natural action of Gα on X and the
action of Gα on A by conjugation.

Now:

αg = αh ⇒ αgh−1
= α

⇒ gh−1 ∈ Gα ∩A

⇒ gh−1 = 1 (since, by 5.3, Gα ∩A = {1})
⇒ g = h
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so θ is injective. Since A is transitive, θ is also surjective.
Since (ag)θ = αg−1ag = αag (as g−1 ∈ Gα) = [aθ]g, θ is also a Gα-morphism, as

required.

Proposition 5.5. Let G, X, A and α be as above, and suppose further that G
is oligomorphic on X. Then X with its structure is interpretable in G.

Proof. We start by showing that the set X is definable in G. Note that since G
is primitive, X has no non trivial proper blocks, i.e. no non trivial proper subset Y
such that for all g ∈ G either Y g = Y or Y ∩Y g = ∅. Via the identification of X and
A given in the proof of 5.4, this means that A has no non trivial proper subgroups
that are G-invariant. So A is minimal among non trivial normal subgroups.

So choose g ∈ A, g 6= 1. We claim that A = {∏i∈I(g
εi)hi : hi ∈ G, εi = ±1}.

Let H = {∏(gεi)hi}: clearly, {1} 6= H ≤ G and H ⊆ A. Now pick h ∈ G and∏
(gεi)hi ∈ H. Then (

∏
(gεi)hi)h =

∏
(gεi)hih ∈ H. So H ¢ G. By minimality of A

among non trivial normal subgroups, H = A.
We now claim that there is a bound on the number of conjugates of g into

which an element of A factors. We know that G is oligomorphic on X hence it is
oligomorphic in its action on A as a pure set inherited from X via the identification
of X and A, so in particular it has a finite number of orbits on A2. Therefore
the centraliser CG(g) has finitely many orbits on A. But elements which require
a different number of products of conjugates lie in different orbits. So our claim
follows, and A is definable.

Now consider the map φ : G → Gα given by gφ = (ah)φ = h, where a ∈ A, h ∈
Gα are the unique decomposition of g as an element of the semidirect product
AoGα. Then φ is an epimorphism with kernel A, so that

G/A ∼= Gα.

We define an action of AoG/A on A as follows:

abAh := (ab)h for all a, b ∈ A,Ah ∈ G/A.

For ease of notation, we shall write bh (rather than bAh) for the general element of
AoG/A. Then:

(abh)ck = (h−1abh)ck = k−1h−1abhck

and

abhck = abhch−1hk = k−1h−1abhch−1hk = k−1h−1abhck

so that we have indeed defined an action. By using the isomorphism between Gα

and G/A, we can identify the actions 〈A o G/A,A〉 and 〈A o Gα, A〉. Then the
structure on X is given by the orbits of AoG/A on An for all n ∈ ω.

Proposition 5.5 applies to many subgroups of Sym(Ω). Indeed, it applies to all
the primitive smoothly approximable structures of affine type described in [10].

Acknowledgements. The results in this paper form part of my PhD thesis. I
would like to thank my supervisor, Prof. Dugald Macpherson, for continuous help
and support. I also thank the referee for many helpful comments, and for remark
4.8.



reconstruction of classical geometries 21

The research in this paper was supported by a studentship from the Istituto
Nazionale di Alta Matematica, Rome.

References
1. M. Aschbacher, Finite group theory Cambridge studies in advanced mathematics, 10 (Cam-

bridge Univ. Press, 1994).
2. M. Bhattacharjee, D. Macpherson, R. G. Möller and P. M. Neumann, Notes on infinite

permutation groups Lecture Notes in Mathematics 1698 (Springer, 1998).
3. N. L. Biggs and A. T. White, Permutation groups and conbinatorial structures London

Math. Soc. Lecture Note Ser. 33 (Cambridge Univ. Press, 1979).
4. G. Cherlin and E. Hrushovski, Finite structures with few types Ann. Math. Studies 152

(Princeton Univ. Press, 2003).
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