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The question: if we know the automorphism

group Aut(M) of a first order structure M,

what do we know about M?

The question is only sensible in highly sym-

metric contexts, such as ω-categorical struc-

tures.

If M and N ω-categorical:

1. Aut(M) ∼= Aut(N ) as topological groups

⇐⇒ M and N are bi-interpretable;

2. 〈Aut(M),M〉 ∼= 〈Aut(N ),N〉 ⇐⇒ M
and N have the same 0-definable sets.

Reconstruction results give conditions under

which the pure group structure determines

the topology (e.g. the small index property)

or the action of Aut(M) on M.

2



Rubin’s reconstruction method

Definition 1 (Weak ∀∃ interpretation) LetM be ω-
categorical and transitive. We look for:

1. a conjugacy class C ⊆ Aut(M), say C = gAut(M);

2. an equivalence relation E on C which is

• ∀∃ definable in the language of groups, pos-
sibly with parameters, and

• invariant under conjugacy by an element of
Aut(M), that is: for all h, k ∈ C, g ∈ Aut(M)

hEk ⇐⇒ hgEkg;

3. a bijection φ :M→ C/E such that

〈Aut(M),M〉 ∼= 〈Aut(M), C/E〉,
where Aut(M) acts on C/E by conjugation.

If 〈C,E, φ〉 can be found, we say that M has a weak
∀∃ interpretation.

Generally, C contains maps having a single fixed point,
and E is ”has the same fixed point as”.

WhenM is not transitive, a weak ∀∃ interpretation for
M consists of weak ∀∃ interpretations for each orbit
of Aut(M) on M.
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Theorem 2 (M. Rubin, 92) Let M and N
be ω-categorical structures without algebraic-

ity, and suppose that M has a weak ∀∃ inter-

pretation. Suppose that

Aut(M) ∼= Aut(N )

as pure groups. Then

〈Aut(M),M〉 ∼= 〈Aut(N ),N〉,

i.e. M and N have the same 0-definable sets.
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A weak ∀∃ interpretation for certain ho-
mogeneous relational ω-categorical struc-
tures

Let M be an L-structure, where L only con-
tains relation symbols. Suppose that M is
transitive, ω-categorical and homogeneous.
Let G = Aut(M) and d ∈M. Let

Xd := {g ∈ G : fix(g) = d}

Gd := {g ∈ G : dg = d}

Then Xd and Xd ×Xd are Polish spaces.
Moreover X

Gd
d = Xd.

Definition 3 A pair (f1, f2) is Gd-generic if
the orbit (f1, f2)Gd is comeagre in Xd ×Xd.

Fact 4 Let (f1, f2) be Gd-generic in Xd×Xd.
Let D := (f1, f2)Gd. Then:

1. f
Gd
1 = f

Gd
2 is comeagre in Xd;

2. for all g ∈ fGd1 , the fibre

Dg = {f ∈ Xd : (g, f) ∈ D}
is comeagre in Xd.
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Let DG := {(f1, f2)g : g ∈ G}. Then DG

consists of pairs (h1, h2) such that fix(h1) =

fix(h2) is a singleton.

Proposition 5 Let E be the following equiv-

alence relation on fG1 :

h1Eh2 ⇐⇒ fix(h1) = fix(h2).

Then E is ∃-definable in G by

h1Eh2 ⇐⇒ ∃f ∈ G : (h1, f), (h2, f) ∈ DG.

Proof (⇐) trivial.

(⇒) If fix(h1) = fix(h2) = e, find k ∈ G such

that ek = d. Then fix(hk1) = fix(hk2) = d,

so h1, h2 ∈ f
Gd
1 . Then the fibres D

hk1
,D

hk2
are

both comeagre. Hence there is f̂ ∈ D
hk1
∩D

hk2
.

Let f := f̂k
−1

.

It is easy to check that E is ∃ definable. 2
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Conditions for the existence of a Gd-generic

pair

Let M be an ω-categorical, transitive and

homogeneous structure in the relational lan-

guage L, let d ∈M.

Let κ be the class of finite substructures A of

M such that there are f1, f2 ∈ Aut(A) with

fix(f1) = fix(f2) = d.

Suppose κ has the free amalgamation prop-

erty.

Suppose further the following holds (fixed

point extension property):

for all finite A ⊆M, if p1, . . . , pn are finite par-

tial isomorphisms of A and fix(p1) = fix(p2) =

· · · = fix(pn) = {d}, there are a finite B ⊆ M
and f1, . . . , fn ∈ Aut(B) such that:

• pi ⊆ fi;
• fix(fi) = {d} for i = 1, . . . , n.
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Then there is a countable homogeneous struc-

ture

(M, f1, f2, d)

which embeds every member of κ (the Fräıssé

limit of κ).

The pair (f1, f2) is Gd-generic.

(NB the formal construction requires a change

of language. The L-structure on (M, f1, f2, d)

is the M we started off with).
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Theorem 6 LetM be homogeneous, ω-cate-

gorical and transitive in a finite relational lan-

guage. Let κ, f1, f2, d be as above (so κ has

the free amalgamation property and the fixed

point extension property). Let (M, f1, f2, d)

be the Fräıssé limit of κ, and let G := Aut(M),

D := (f1, f2)Gd. Then D is comeagre in Xd×
Xd, i.e. (f1, f2) is a Gd-generic pair.

Proof (sketch) We play the Banach-Mazur

game of D: players I and II choose an in-

creasing sequence

(p1,0, p2,0) ⊆ (p1,1, p2,1) ⊆ (p1,2, p2,2), . . .

of finite partial isomorphisms of M such that

fix(pij) = {d} for all i, j.

Player I starts the game. Player II wins if

and only if (p1, p2) := (
⋃
i∈ω p1,i,

⋃
i∈ω p2,i) ∈

D. Player II has a winning strategy iff D is

comeagre in Xd ×Xd.
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Player II can always play so that at stage i,
for i > 1 and even,

1. he can choose to put any x ∈ M in the
domain and range of p1,i, p2,i;

2. (p1,i, p2,i) ∈ P2 and dom(p1,i) = ran(p1,i),
dom(p2,i) = ran(p2,i);

3. he eventually gets that (M, p1, p2, d) is
homogeneous, so

(p1, p2) ∼ (f1, f2).

The fixed point extension property (FEP) is
crucial for all of 1., 2. and 3.

At stage i+1, i even, player II is given a finite
structure (∆i, p1,i, p2,i, d), where the pj,i are
finite partial isomorphisms of ∆i. For points
1. and 2., for any x ∈ M, II can consider
∆′i+1 := ∆i ∪ {x} and use FEP to obtain
extensions ∆i+1 of ∆′i+1, and p1,i+1, p2,i+1 ∈
Aut(∆i+1) of p1,i, p2,i, each fixing only d.

10



Some structures covered by this method (i.e.

for which the fixed point extension property

holds):

1. the class of all finite structures in a given

finite relational language S (e.g. k-hypergraphs);

2. Km-free graphs;

3. Henson digraphs;

4. the arity k analogues of triangle-free graphs

(k-hypergraphs not admitting a k+ 1 set all of whose

k-tuples are hyperedges.)

Extension properties for finite partial isomor-

phisms — with no restrictions on the cycle

type — have been proved for graphs first

(Hrushovski), and subsequently for the other

structures mentioned above (Herwig).

They yield the small index property for the

structures concerned.

The proofs of FEP are essentially the same.
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