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Our aim: to compare two different notions of
generic models:

genericity defined in terms of the topology on the space of
expansions of a structure (à la Truss-Ivanov);

genericity related to the existentially closed models of a theory
(à la Lascar/Chatzidakis & Pillay).
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Plan:

define two different notions of a generic automorphism, with
an easy example;

define two corresponding notions of generic expansion:

‘generic’ (rich) expansions in the context of ‘inductive
amalgamation classes’
Truss-Ivanov generic expansions

explain the relationship between the two in an easy special
case (i.e. the base structure is ω- categorical);

sketch a generalization.
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Truss-generic automorphisms

Let M be a countable structure.

Aut(M) is a Baire space (with the standard topology, generated by
basic open sets of the form

Aut(M)ab := {g ∈ Aut(M) : ag = b},

where a, b are finite tuples from M)

Definition

α ∈ Aut(M) is Truss-generic if

αAut(M) := {αg : g ∈ Aut(M)}

is comeagre, i.e. it contains a countable intersection of dense open
sets.
Intuition: α exhibits any finite behaviour consistent in Aut(M).
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Lascar-generic automorphisms

The setting:
T a complete theory with q.e. in a countable language L;
L0 = L ∪ {F} an expansion of L by a unary function symbol;
T0 = T ∪ {‘F is an automorphism’}.

Definition

Let (M, σ) |= T0. Then σ is Lascar-generic if for every partial
isomorphism

f : (N, τ)→ (M, σ) partial

such that (N, τ) |= T0 is countable and dom(f ) ⊆ N is algebraically
closed, there is an embedding

f̂ : (N, τ)→ (M, σ) total

extending f .
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Let Trich := Th{(M, σ) : M |= T , σ Lascar-generic}.

If T is stable:

1. Lascar-generic automorphisms exist;

2. T0 has a model companion TA ⇒ TA = Trich;

3. Trich is model-complete ⇒ Trich is the model companion of T0.
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L = ∅, Ω a countable set, T = Th(Ω)

Truss-generic automorphisms:

ω fixed points
ω cycles of length 2
ω cycles of length 3
...
ω cycles of length n
...

Lascar-generic automorphisms:

ω fixed points
ω cycles of length 2
ω cycles of length 3
...
ω cycles of length n
...
ω cycles of length ω

Remark

The model companion Trich of T0 exists.
If f ∈ Aut(Ω) is Truss-generic, (Ω, f ) |= Trich.
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Lascar genericity: richness

The setting:
T a complete L-theory
L0 = L ∪ {R}, where R is a finite tuple of function and relation symbols
T0 an expansion of T to L0.

Let κ be a class containing models + morphisms, where

models: infinite models of T0. Notation: (M, σ), where
M |= T and σ is an interpretation of R;

morphisms are partial embeddings between models
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We say that κ is an inductive amalgamation class if:

every morphism is a partial isomorphism;

every partial elementary map is a morphism;

(AP) every morphism
f : (M, σ)→ (N, τ) (partial)

extends to a total morphism
f̂ : (M, σ)→ (N ′, τ ′) (total)

(JEP) for every (M1, σ1), (M2, σ2) ∈ κ there are a model
(N, τ) and total morphisms fi : (Mi , σi )→ (N, τ);

the class of morphisms is closed under inverse and
composition;

the class of morphisms is closed under restrictions;

κ is closed under unions of chains.
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Definition

(M, σ) ∈ κ is richa if every morphism

f : (N, τ)→ (M, σ) (partial)

such that |f | < |N| ≤ |M| extends to a total morphism

f̂ : (N, τ)→ (M, σ) (total).

aLascar’s ℵ1-generic if σ, τ are automorphisms and |f | = ℵ0
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Fact

All rich models have the same theory.
(JEP is essential in the proof!)

Definition

Let κ be an inductive amalgamation class. Then

Trich := Th({U ∈ κ : U is rich}).
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A result (Chatzidakis & Pillay, adapted to our context):

Notation: M ≤ N if idM : M → N is a morphism.

Theorem

Let κ be an inductive amalgamation class, and suppose further
that:

if M,N |= Trich, then M ⊆ N ⇐⇒ M ≤ N.

Tfae:

Trich is model complete;

all rich models are saturated;

Trich is the model companion of T0.

Viceversa, if T0 has a model companion, then Trich is this model
companion.
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These results hold even when:

the models in κ are not necessarily the models of a theory
(although we need models to be structures in a given
language and κ be closed under elementary equivalence);

JEP does not hold (then κ can be partitioned into ‘connected
components’, within each of which JEP holds).
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Examples:

1. Let:

T be a complete L-theory with q.e. and with the PAPA (cf.
Lascar; e.g. T stable);

L0 = L ∪ {f }, with f a unary function symbol;

T0 := T ∪ {‘σ is an automorphism’};
(M, σ) |= T0;

models in κ:
{(N, τ) : N |= T , τ ∈ Aut(N), (N, τ) ≡acl(∅) (M, σ)};
morphisms in κ: partial isomorphisms between models s.t.
their domain is a.c.

Then (M, σ) is rich iff σ is Lascar-generic.
JEP does not hold if we take κ := {(N, τ) : (N, τ) |= T0)}.
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2. Let:

T be a complete L-theory with q.e.;

L0 = L ∪ {R}, with R a unary predicate;

T0 = T ;

(M,R) a model of T0;

models in κ:
{(N,Q) : N |= T , (aclT (∅),Q ∩aclT (∅)) ' (aclT (∅),R ∩aclT (∅))};
morphisms in κ: partial isomorphisms between models s.t.
their domain is a.c.

If T eliminates the quantifier ∃∞, Trich is the model companion of
T0.
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Truss/Ivanov genericity

The setting:
T a complete L-theory
N a countable model of T
L0 = L ∪ {R}, where R is a finite tuple of function and relation symbols
T0 an ∀–axiomatizable expansion of T to L0.

Definition

The space of expansions of N is

Exp(N,T0) := {σ : (N, σ) |= T0}.
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Topology on Exp(N,T0): the one generated by the basic open sets
of the form

[φ]N := {σ : (N, σ) |= T0 ∪ {φ}},

where φ is a quantifier–free N–sentence.

Fact

With this topology Exp(N,T0) is a Baire space.

Definition

An expansion σ ∈ Exp(N,T0) is Truss-generic if

{τg : g ∈ Aut(N)}

is comeagre in Exp(N,T0).
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Comparing generic expansions

The setting:

T a complete L-theory with q.e.

T is small, N |= T is (the) countable saturated model

L0 = L ∪ {R}, where R is a finite tuple of function and relation symbols

T0 an ∀–axiomatizable (modulo T ) expansion of T to L0

κ is an inductive amalgamation class whose models are the models of T0

Is there a relationship between models of Trich and Truss–generic
expansions of N?
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A special case

Further assumptions:

T is ω-categorical;

Trich is model complete.

Let N be the countable model of T . Then:

Definition

An expansion σ ∈ Exp(N,T0) is atomic if it is an atomic model
of Trich.
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The comparison in general

Fact

1. The set of countable models of Trich is comeagre in Exp(N,T0);

2. if (M, σ) is atomic, then (M, σ) |= Trich;

3. if an atomic expansion exists, then the set of atomic expansions
is comeagre in Exp(N,T0).
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Comparing generic expansions

The comparison in a special case
The comparison in general

Fact

Let α ∈ Exp(N,T0), i.e. (N, α) ∈ κ. Tfae:

α is atomic;

α is Truss-generic.

Proof.

(⇒): let α be an atomic expansion. Then the set of atomic
expansions is of the form Y := {αg : g ∈ Aut(N)}. By the
previous fact, Y is comeagre. But two comeagre sets of this form
coincide. Hence Y is exactly the set of Truss-generic expansions.

(⇐): longer!
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How to generalize the comparison

Idea: get rid of the assumptions

T ω-categorical;

Trich model complete.

Idea:
1. If N |= T is countable and saturated, Trich model-complete,
then

Truss-generic expansions of N = ‘smooth’ prime models of Trich.

2. If N |= T is countable and saturated, then

Truss-generic expansions of N = ‘smooth’, ‘e-atomic’ models of
Trich.
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Definition

A partial T0–type is quasifinite if it contains only finitely
many formulae not in L.

(M, σ) is a smooth model (or σ is a smooth expansion) if it
realizes every quantifier free quasifinite type which:

1 has finitely many parameters;
2 is finitely consistent in (M, σ).
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Let X be the set of existentially closed smooth expansions of N.

Fact

X is a comeagre subset of Exp(N,T0).

Definition

Let p(x) ∈ S(∅) be realized in some (N, σ) ∈ X , and let p�1(x) be
the set of universal and existential formulae in p. Then p is
e-isolated if there is a quasifinite type π(x) such that the set

{q�1(x) : q is realized in some (N, σ) ∈ X and π(x) ⊆ q(x)}

is the singleton {p�1(x)}.
A tuple is e-isolated if its type is.
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The comparison in a special case
The comparison in general

Definition

An expansion α ∈ X is e-atomic if every finite tuple in N is
e-isolated.

Remark

If T is ω-categorical, any expansion is smooth.
If Trich is model-complete, every model of Trich is e.c. and any
formula is equivalent to an existential one.
Hence, when both hypotheses hold a model is e-atomic if and only
if it is atomic.
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Theorem

Let T be small, N |= T the countable saturated model,
α ∈ Exp(N,T0).
Tfae:

1 α is e-atomic;

2 α is Truss-generic.

Theorem

Let Sx be the set of types of the form p�1(x), where p(x) is some
complete parameter free type realized in some e.c. smooth
expansion of N. Then Sx can be equipped with a topology so that
the following are equivalent:

Truss-generic expansions exist;

for every finite x, the isolated points are dense in Sx .
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expansion of N. Then Sx can be equipped with a topology so that
the following are equivalent:

Truss-generic expansions exist;

for every finite x, the isolated points are dense in Sx .
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