Generic expansions of countable models

Silvia Barbina

Universitat de Barcelona

joint work with Domenico Zambella

Bogotá Model Theory Meeting 2007

Our aim: to compare two different notions of **generic models:**

- genericity defined in terms of the topology on the space of expansions of a structure (à la Truss-Ivanov);
- genericity related to the existentially closed models of a theory (à la Lascar/Chatzidakis & Pillay).

Our aim: to compare two different notions of **generic models:**

- genericity defined in terms of the topology on the space of expansions of a structure (à la Truss-Ivanov);
- genericity related to the existentially closed models of a theory (à la Lascar/Chatzidakis & Pillay).

Our aim: to compare two different notions of **generic models:**

- genericity defined in terms of the topology on the space of expansions of a structure (à la Truss-Ivanov);
- genericity related to the existentially closed models of a theory (à la Lascar/Chatzidakis & Pillay).

Plan:

- define two different notions of a generic automorphism, with an easy example;
- define two corresponding notions of generic expansion:
 - 'generic' (*rich*) expansions in the context of 'inductive amalgamation classes'
 - Truss-Ivanov generic expansions
- explain the relationship between the two in an easy special case (i.e. the base structure is ω- categorical);
- sketch a generalization.

Truss-generic automorphisms Lascar-generic automorphisms An example

Truss-generic automorphisms

Let M be a countable structure.

Aut(M) is a Baire space (with the standard topology, generated by basic open sets of the form

$$\operatorname{Aut}(M)_{ab} := \{g \in \operatorname{Aut}(M) : a^g = b\},\$$

where a, b are finite tuples from M)

Definition $\alpha \in \operatorname{Aut}(M)$ is **Truss-generic** if $\alpha^{\operatorname{Aut}(M)} := \{ \alpha^g : g \in \operatorname{Aut}(M) \}$

is comeagre, i.e. it contains a countable intersection of dense open sets.

Intuition: α exhibits any finite behaviour consistent in Aut(M).

Truss-generic automorphisms Lascar-generic automorphisms An example

Truss-generic automorphisms

Let M be a countable structure.

Aut(M) is a Baire space (with the standard topology, generated by basic open sets of the form

$$\operatorname{Aut}(M)_{ab} := \{g \in \operatorname{Aut}(M) : a^g = b\},\$$

where a, b are finite tuples from M)

Definition

 $\alpha \in \operatorname{Aut}(M)$ is Truss-generic if

$$\alpha^{\operatorname{Aut}(M)} := \{ \alpha^{g} : g \in \operatorname{Aut}(M) \}$$

is comeagre, i.e. it contains a countable intersection of dense open sets.

Intuition: α exhibits any finite behaviour consistent in Aut(M).

Truss-generic automorphisms Lascar-generic automorphisms An example

Truss-generic automorphisms

Let M be a countable structure.

Aut(M) is a Baire space (with the standard topology, generated by basic open sets of the form

$$\operatorname{Aut}(M)_{ab} := \{g \in \operatorname{Aut}(M) : a^g = b\},\$$

where a, b are finite tuples from M)

Definition

 $\alpha \in Aut(M)$ is Truss-generic if

$$\alpha^{\operatorname{Aut}(M)} := \{ \alpha^{g} : g \in \operatorname{Aut}(M) \}$$

is comeagre, i.e. it contains a countable intersection of dense open sets.

Intuition: α exhibits any finite behaviour consistent in Aut(M).

Truss-generic automorphisms Lascar-generic automorphisms An example

Lascar-generic automorphisms

The setting:

T a complete theory with q.e. in a countable language L;

 $L_0 = L \cup \{F\}$ an expansion of L by a unary function symbol; $T_0 = T \cup \{F\}$ is an automorphism' $\}$.

Definition

Let $(M, \sigma) \models T_0$. Then σ is Lascar-generic if for every partial isomorphism

 $f:(N, au) o (M,\sigma)$ partial

such that $(N, \tau) \models T_0$ is countable and $dom(f) \subseteq N$ is algebraically closed, there is an embedding

$$\hat{f}:(N, au) o (M,\sigma)$$
 total

extending f.

Truss-generic automorphisms Lascar-generic automorphisms An example

Lascar-generic automorphisms

The setting:

T a complete theory with q.e. in a countable language *L*; $L_0 = L \cup \{F\}$ an expansion of *L* by a unary function symbol; $T_0 = T \cup \{F\}$ is an automorphism' $\}$.

Definition

Let $(M, \sigma) \models T_0$. Then σ is Lascar-generic if for every partial isomorphism

 $f:(N, au) o (M,\sigma)$ partial

such that $(N, \tau) \models T_0$ is countable and $\operatorname{dom}(f) \subseteq N$ is algebraically closed, there is an embedding

$$\hat{f}:(N, au) o (M,\sigma)$$
 total

extending f.

Truss-generic automorphisms Lascar-generic automorphisms An example

Lascar-generic automorphisms

The setting:

T a complete theory with q.e. in a countable language *L*; $L_0 = L \cup \{F\}$ an expansion of *L* by a unary function symbol; $T_0 = T \cup \{F\}$ is an automorphism' $\}$.

Definition

Let $(M, \sigma) \models T_0$. Then σ is Lascar-generic if for every partial isomorphism

 $f:(N, au) o (M,\sigma)$ partial

such that $(N, \tau) \models T_0$ is countable and $\operatorname{dom}(f) \subseteq N$ is algebraically closed, there is an embedding

$$\hat{f}:(N, au) o (M,\sigma)$$
 total

extending f.

Truss-generic automorphisms Lascar-generic automorphisms An example

Lascar-generic automorphisms

The setting:

T a complete theory with q.e. in a countable language *L*; $L_0 = L \cup \{F\}$ an expansion of *L* by a unary function symbol; $T_0 = T \cup \{F\}$ is an automorphism' $\}$.

Definition

Let $(M, \sigma) \models T_0$. Then σ is Lascar-generic if for every partial isomorphism

$$f:(N, au) o (M,\sigma)$$
 partial

such that $(N, \tau) \models T_0$ is countable and $dom(f) \subseteq N$ is algebraically closed, there is an embedding

$$\hat{f}:(\pmb{N}, au) o(\pmb{M},\sigma)$$
 total

extending f.

Let $T_{rich} := Th\{(M, \sigma) : M \models T, \sigma \text{ Lascar-generic}\}.$

If T is stable:

- 1. Lascar-generic automorphisms exist;
- 2. T_0 has a model companion $T_A \Rightarrow T_A = T_{rich}$;
- 3. T_{rich} is model-complete \Rightarrow T_{rich} is the model companion of T_0 .

(ロ) (同) (E) (E) (E)

Introduction Truss-generic automorphisms Generic expansions Lascar-generic automorphisms Comparing generic expansions An example

$L = \emptyset$, Ω a countable set, $T = Th(\Omega)$

Truss-generic automorphisms:Lascar-generic automorphis ω fixed points ω fixed points ω cycles of length 2 ω cycles of length 2 ω cycles of length 3 ω cycles of length 3 \vdots \vdots ω cycles of length n \vdots \vdots ω cycles of length n \vdots ω cycles of length n \vdots ω cycles of length n

Remark

The model companion $T_{\rm rich}$ of T_0 exists. If $f \in {\rm Aut}(\Omega)$ is Truss-generic, $(\Omega, f) \models T_{\rm rich}$.

Introduction Truss-generic automorphisms Generic expansions Lascar-generic automorphisms Comparing generic expansions An example

 $L = \emptyset$, Ω a countable set, $T = Th(\Omega)$

Truss-generic automorphisms:

 ω fixed points ω fixed points ω cycles of length 2 ω cycles of length 3 ω cycles of length *n*

Lascar-generic automorphisms:

・ロン ・回 と ・ ヨ と ・ ヨ と

```
\omega cycles of length 2
\omega cycles of length 3
\omega cycles of length n
```

 ω cycles of length ω

Introduction Truss-generic automorphisms Generic expansions Lascar-generic automorphisms Comparing generic expansions An example

 $L = \emptyset$, Ω a countable set, $T = Th(\Omega)$

Truss-generic automorphisms:

 ω fixed points ω fixed points ω cycles of length 2 ω cycles of length 3 ω cycles of length *n*

Lascar-generic automorphisms:

・ロン ・回 と ・ ヨ と ・ ヨ と

```
\omega cycles of length 2
\omega cycles of length 3
\omega cycles of length n
```

 ω cycles of length ω

Introduction	Truss-generic automorphisms
Generic expansions	Lascar-generic automorphisms
Comparing generic expansions	An example

$$L = \emptyset$$
, Ω a countable set, $T = Th(\Omega)$

Truss-generic automorphisms:Lascar-generic automorphisms: ω fixed points ω fixed points ω cycles of length 2 ω cycles of length 2 ω cycles of length 3 ω cycles of length 3 \vdots ω cycles of length n \vdots ω cycles of length n \vdots ω cycles of length n \vdots ω cycles of length n

Remark

The model companion $T_{\rm rich}$ of T_0 exists. If $f \in {\rm Aut}(\Omega)$ is Truss-generic, $(\Omega, f) \models T_{\rm rich}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lascar genericity: richness Truss/Ivanov genericity

Lascar genericity: richness

The setting: T a complete *L*-theory

 $L_0 = L \cup \{R\}$, where R is a finite tuple of function and relation symbols T_0 an expansion of T to L_0 .

Let κ be a class containing **models + morphisms**, where

- models: infinite models of T_0 . Notation: (M, σ) , where $M \models T$ and σ is an interpretation of R;
- morphisms are *partial* embeddings between models

Lascar genericity: richness

The setting: *T* a complete *L*-theory $L_0 = L \cup \{R\}$, where *R* is a finite tuple of function and relation symbols T_0 an expansion of *T* to L_0 .

Let κ be a class containing **models + morphisms**, where

- models: infinite models of T_0 . Notation: (M, σ) , where $M \models T$ and σ is an interpretation of R;
- morphisms are *partial* embeddings between models

Lascar genericity: richness

The setting: *T* a complete *L*-theory $L_0 = L \cup \{R\}$, where *R* is a finite tuple of function and relation symbols T_0 an expansion of *T* to L_0 .

Let κ be a class containing **models + morphisms**, where

- models: infinite models of T_0 . Notation: (M, σ) , where $M \models T$ and σ is an interpretation of R;
- morphisms are *partial* embeddings between models

Lascar genericity: richness

The setting: *T* a complete *L*-theory $L_0 = L \cup \{R\}$, where *R* is a finite tuple of function and relation symbols T_0 an expansion of *T* to L_0 .

Let κ be a class containing **models + morphisms**, where

- models: infinite models of T_0 . Notation: (M, σ) , where $M \models T$ and σ is an interpretation of R;
- morphisms are *partial* embeddings between models

Lascar genericity: richness

The setting: *T* a complete *L*-theory $L_0 = L \cup \{R\}$, where *R* is a finite tuple of function and relation symbols T_0 an expansion of *T* to L_0 .

Let κ be a class containing **models + morphisms**, where

- models: infinite models of T_0 . Notation: (M, σ) , where $M \models T$ and σ is an interpretation of R;
- morphisms are *partial* embeddings between models

Lascar genericity: richness

The setting: *T* a complete *L*-theory $L_0 = L \cup \{R\}$, where *R* is a finite tuple of function and relation symbols T_0 an expansion of *T* to L_0 .

Let κ be a class containing **models + morphisms**, where

- models: infinite models of T_0 . Notation: (M, σ) , where $M \models T$ and σ is an interpretation of R;
- morphisms are *partial* embeddings between models

・ロン ・回 と ・ ヨ と ・ ヨ と

We say that κ is an **inductive amalgamation class** if:

- every morphism is a partial isomorphism;
- every partial elementary map is a morphism;
- (AP) every morphism

$$f: (M, \sigma) \to (N, \tau)$$
 (partial)

extends to a total morphism $\hat{f} \cdot (M \sigma) \rightarrow (N' \sigma)$

 $(M,\sigma)
ightarrow (N', au')$ (total)

イロン イヨン イヨン イヨン

- (JEP) for every $(M_1, \sigma_1), (M_2, \sigma_2) \in \kappa$ there are a model (N, τ) and total morphisms $f_i : (M_i, \sigma_i) \to (N, \tau)$;
- the class of morphisms is closed under inverse and composition;
- the class of morphisms is closed under restrictions;
- κ is closed under unions of chains.

Lascar genericity: richness Truss/Ivanov genericity

We say that κ is an **inductive amalgamation class** if:

- every morphism is a partial isomorphism;
- every partial elementary map is a morphism;
- (AP) every morphism

$$(M,\sigma)
ightarrow (N, au)$$
 (part

xtends to a total morphism $\widehat{f}:(M,\sigma) ightarrow (N', au')$

- (JEP) for every $(M_1, \sigma_1), (M_2, \sigma_2) \in \kappa$ there are a model (N, τ) and total morphisms $f_i : (M_i, \sigma_i) \to (N, \tau)$;
- the class of morphisms is closed under inverse and composition;
- the class of morphisms is closed under restrictions;
- κ is closed under unions of chains.

Lascar genericity: richness Truss/Ivanov genericity

We say that κ is an **inductive amalgamation class** if:

- every morphism is a partial isomorphism;
- every partial elementary map is a morphism;
- (AP) every morphism

$$\begin{array}{ll} f:(M,\sigma) \to (N,\tau) & \mbox{(partial)}\\ \mbox{extends to a total morphism} & \\ \hat{f}:(M,\sigma) \to (N',\tau') & \mbox{(total)} \end{array}$$

- (JEP) for every $(M_1, \sigma_1), (M_2, \sigma_2) \in \kappa$ there are a model (N, τ) and total morphisms $f_i : (M_i, \sigma_i) \to (N, \tau)$;
- the class of morphisms is closed under inverse and composition;
- the class of morphisms is closed under restrictions;
- κ is closed under unions of chains.

소리가 소문가 소문가 소문가

Lascar genericity: richness Truss/Ivanov genericity

We say that κ is an **inductive amalgamation class** if:

- every morphism is a partial isomorphism;
- every partial elementary map is a morphism;
- (AP) every morphism

$$f:(M,\sigma)
ightarrow (N, au)$$
 (partial)

extends to a total morphism

$$\hat{\tau}:(\pmb{M},\sigma)
ightarrow(\pmb{N}', au')$$
 (total)

- (JEP) for every $(M_1, \sigma_1), (M_2, \sigma_2) \in \kappa$ there are a model (N, τ) and total morphisms $f_i : (M_i, \sigma_i) \to (N, \tau)$;
- the class of morphisms is closed under inverse and composition;
- the class of morphisms is closed under restrictions;
- κ is closed under unions of chains.

Lascar genericity: richness Truss/Ivanov genericity

We say that κ is an **inductive amalgamation class** if:

- every morphism is a partial isomorphism;
- every partial elementary map is a morphism;
- (AP) every morphism

$$f:(M,\sigma)
ightarrow (N, au)$$
 (partial)

(total)

extends to a total morphism $\hat{f}: (M, \sigma) \rightarrow (N', \tau')$

- (JEP) for every $(M_1, \sigma_1), (M_2, \sigma_2) \in \kappa$ there are a model (N, τ) and total morphisms $f_i : (M_i, \sigma_i) \to (N, \tau)$;
- the class of morphisms is closed under inverse and composition;
- the class of morphisms is closed under restrictions;
- κ is closed under unions of chains.

・ロン ・回と ・ヨン ・ヨン

We say that κ is an **inductive amalgamation class** if:

- every morphism is a partial isomorphism;
- every partial elementary map is a morphism;
- (AP) every morphism

$$f:(M,\sigma)
ightarrow (N, au)$$
 (partial)

(total)

extends to a total morphism $\hat{f}: (M, \sigma) \rightarrow (N', \tau')$

- (JEP) for every $(M_1, \sigma_1), (M_2, \sigma_2) \in \kappa$ there are a model (N, τ) and total morphisms $f_i : (M_i, \sigma_i) \to (N, \tau)$;
- the class of morphisms is closed under inverse and composition;
- the class of morphisms is closed under restrictions;
- κ is closed under unions of chains.

・ロト ・回ト ・ヨト ・ヨト

Lascar genericity: richness Truss/Ivanov genericity

We say that κ is an **inductive amalgamation class** if:

- every morphism is a partial isomorphism;
- every partial elementary map is a morphism;
- (AP) every morphism

$$f:(M,\sigma)
ightarrow (N, au)$$
 (partial)

(total)

extends to a total morphism $\hat{f}: (M, \sigma) \rightarrow (N', \tau')$

- (JEP) for every $(M_1, \sigma_1), (M_2, \sigma_2) \in \kappa$ there are a model (N, τ) and total morphisms $f_i : (M_i, \sigma_i) \to (N, \tau)$;
- the class of morphisms is closed under inverse and composition;
- the class of morphisms is closed under restrictions;
- κ is closed under unions of chains.

・ロン ・回と ・ヨン ・ヨン

Definition

 $(M, \sigma) \in \kappa$ is rich^a if every morphism

$$f:(N, au)
ightarrow (M,\sigma)$$
 (partial)

such that $|f| < |N| \le |M|$ extends to a total morphism

$$\hat{f}:(N, au)
ightarrow (M,\sigma)$$
 (total).

^aLascar's \aleph_1 -generic if σ, τ are automorphisms and $|f| = \aleph_0$

・ロット (日本) (日本) (日本)

Fact

All rich models have the same theory.

(JEP is essential in the proof!)

Definition

Let κ be an inductive amalgamation class. Then

$$T_{\mathrm{rich}} := \mathrm{Th}(\{U \in \kappa : U \text{ is rich}\}).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Fact

All rich models have the same theory. (JEP is essential in the proof!)

Definition

Let κ be an inductive amalgamation class. Then

$$T_{\mathrm{rich}} := \mathrm{Th}(\{U \in \kappa : U \text{ is rich}\}).$$

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Fact

All rich models have the same theory. (JEP is essential in the proof!)

Definition

Let κ be an inductive amalgamation class. Then

$$\mathcal{T}_{ ext{rich}} := ext{Th}(\{ U \in \kappa : U \text{ is rich} \}).$$

・ロン ・回と ・ヨン ・ヨン

æ

A result (Chatzidakis & Pillay, adapted to our context):

Notation: $M \leq N$ if $id_M : M \rightarrow N$ is a morphism.

Theorem

Let κ be an inductive amalgamation class, and suppose further that:

```
if M, N \models T_{rich}, then M \subseteq N \iff M \le N.
```

Tfae:

- T_{rich} is model complete;
- all rich models are saturated;
- $T_{\rm rich}$ is the model companion of T_0 .

Viceversa, if T_0 has a model companion, then $T_{\rm rich}$ is this model companion.

소리가 소문가 소문가 소문가

A result (Chatzidakis & Pillay, adapted to our context):

Notation: $M \leq N$ if $id_M : M \rightarrow N$ is a morphism.

Theorem

Let κ be an inductive amalgamation class, and suppose further that:

```
if M, N \models T_{rich}, then M \subseteq N \iff M \le N.
```

Tfae:

- T_{rich} is model complete;
- all rich models are saturated;
- $T_{\rm rich}$ is the model companion of T_0 .

Viceversa, if T_0 has a model companion, then $T_{\rm rich}$ is this model companion.

소리가 소문가 소문가 소문가
A result (Chatzidakis & Pillay, adapted to our context):

Notation: $M \leq N$ if $id_M : M \rightarrow N$ is a morphism.

Theorem

Let κ be an inductive amalgamation class, and suppose further that:

if
$$M, N \models T_{\text{rich}}$$
, then $M \subseteq N \iff M \leq N$.

Tfae:

- T_{rich} is model complete;
- all rich models are saturated;
- $T_{\rm rich}$ is the model companion of T_0 .

Viceversa, if T_0 has a model companion, then $T_{\rm rich}$ is this model companion.

소리가 소문가 소문가 소문가

A result (Chatzidakis & Pillay, adapted to our context):

Notation: $M \leq N$ if $id_M : M \rightarrow N$ is a morphism.

Theorem

Let κ be an inductive amalgamation class, and suppose further that:

if
$$M, N \models T_{\text{rich}}$$
, then $M \subseteq N \iff M \leq N$.

Tfae:

- *T*_{rich} *is model complete;*
- all rich models are saturated;
- $T_{\rm rich}$ is the model companion of T_0 .

Viceversa, if T_0 has a model companion, then $T_{\rm rich}$ is this model companion.

A result (Chatzidakis & Pillay, adapted to our context):

Notation: $M \leq N$ if $id_M : M \rightarrow N$ is a morphism.

Theorem

Let κ be an inductive amalgamation class, and suppose further that:

if
$$M, N \models T_{\text{rich}}$$
, then $M \subseteq N \iff M \leq N$.

Tfae:

- T_{rich} is model complete;
- all rich models are saturated;
- $T_{\rm rich}$ is the model companion of T_0 .

Viceversa, if T_0 has a model companion, then $T_{\rm rich}$ is this model companion.

These results hold even when:

- the models in κ are not necessarily the models of a theory (although we need models to be structures in a given language and κ be closed under elementary equivalence);
- JEP does not hold (then κ can be partitioned into 'connected components', within each of which JEP holds).

These results hold even when:

- the models in κ are not necessarily the models of a theory (although we need models to be structures in a given language and κ be closed under elementary equivalence);
- JEP does not hold (then κ can be partitioned into 'connected components', within each of which JEP holds).

- 1. Let:
 - *T* be a complete *L*-theory with q.e. and with the PAPA (cf. Lascar; e.g. *T* stable);
 - $L_0 = L \cup \{f\}$, with f a unary function symbol;
 - $T_0 := T \cup \{ \sigma \text{ is an automorphism'} \};$
 - $(M, \sigma) \models T_0;$
 - models in κ :
 - $\{(N,\tau):N\models T,\ \tau\in \operatorname{Aut}(N),\ (N,\tau)\equiv_{\operatorname{acl}(\emptyset)}(M,\sigma)\};$
 - morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.

Then (M, σ) is rich iff σ is Lascar-generic. JEP does not hold if we take $\kappa := \{(N, \tau) : (N, \tau) \models T_0\}$.

- 1. Let:
 - *T* be a complete *L*-theory with q.e. and with the PAPA (cf. Lascar; e.g. *T* stable);
 - $L_0 = L \cup \{f\}$, with f a unary function symbol;
 - $T_0 := T \cup \{ \sigma \text{ is an automorphism'} \};$
 - $(M, \sigma) \models T_0;$
 - models in κ :
 - $\{(N,\tau):N\models T,\ \tau\in \operatorname{Aut}(N),\ (N,\tau)\equiv_{\operatorname{acl}(\emptyset)}(M,\sigma)\};$
 - morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.

Then (M, σ) is rich iff σ is Lascar-generic. JEP does not hold if we take $\kappa := \{(N, \tau) : (N, \tau) \models T_0\}\}.$

- 1. Let:
 - *T* be a complete *L*-theory with q.e. and with the PAPA (cf. Lascar; e.g. *T* stable);
 - $L_0 = L \cup \{f\}$, with f a unary function symbol;
 - $T_0 := T \cup \{ \sigma \text{ is an automorphism'} \};$
 - $(M, \sigma) \models T_0;$
 - models in κ :

 $\{(N,\tau):N\models T,\ \tau\in \operatorname{Aut}(N),\ (N,\tau)\equiv_{\operatorname{acl}(\emptyset)}(M,\sigma)\};$

 morphisms in κ: partial isomorphisms between models s.t. their domain is a.c.

Then (M, σ) is rich iff σ is Lascar-generic. JEP does not hold if we take $\kappa := \{(N, \tau) : (N, \tau) \models T_0\}$.

- 1. Let:
 - *T* be a complete *L*-theory with q.e. and with the PAPA (cf. Lascar; e.g. *T* stable);
 - $L_0 = L \cup \{f\}$, with f a unary function symbol;
 - $T_0 := T \cup \{ {}^{\circ}\sigma \text{ is an automorphism'} \};$
 - $(M, \sigma) \models T_0;$
 - models in κ:

 $\{(N,\tau):N\models T,\ \tau\in \operatorname{Aut}(N),\ (N,\tau)\equiv_{\operatorname{acl}(\emptyset)}(M,\sigma)\};$

• morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.

Then (M, σ) is rich iff σ is Lascar-generic. JEP does not hold if we take $\kappa := \{(N, \tau) : (N, \tau) \models T_0\}$.

- 1. Let:
 - *T* be a complete *L*-theory with q.e. and with the PAPA (cf. Lascar; e.g. *T* stable);
 - $L_0 = L \cup \{f\}$, with f a unary function symbol;
 - $T_0 := T \cup \{ \sigma \text{ is an automorphism'} \};$
 - $(M, \sigma) \models T_0;$
 - models in κ:

 $\{(N,\tau):N\models T,\ \tau\in \operatorname{Aut}(N),\ (N,\tau)\equiv_{\operatorname{acl}(\emptyset)}(M,\sigma)\};$

• morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.

Then (M, σ) is rich iff σ is Lascar-generic. JEP does not hold if we take $\kappa := \{(N, \tau) : (N, \tau) \models T_0\}\}.$

- 1. Let:
 - *T* be a complete *L*-theory with q.e. and with the PAPA (cf. Lascar; e.g. *T* stable);
 - $L_0 = L \cup \{f\}$, with f a unary function symbol;
 - $T_0 := T \cup \{ \sigma \text{ is an automorphism'} \};$
 - $(M, \sigma) \models T_0;$
 - models in κ:
 - $\{(N,\tau):N\models T,\ \tau\in \operatorname{Aut}(N),\ (N,\tau)\equiv_{\operatorname{acl}(\emptyset)}(M,\sigma)\};$
 - morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.

Then (M, σ) is rich iff σ is Lascar-generic. JEP does not hold if we take $\kappa := \{(N, \tau) : (N, \tau) \models T_0)\}.$

- 1. Let:
 - *T* be a complete *L*-theory with q.e. and with the PAPA (cf. Lascar; e.g. *T* stable);
 - $L_0 = L \cup \{f\}$, with f a unary function symbol;
 - $T_0 := T \cup \{ \sigma \text{ is an automorphism'} \};$
 - $(M, \sigma) \models T_0;$
 - models in κ:

 $\{(N,\tau):N\models T,\ \tau\in \operatorname{Aut}(N),\ (N,\tau)\equiv_{\operatorname{acl}(\emptyset)}(M,\sigma)\};$

• morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.

Then (M, σ) is rich iff σ is Lascar-generic. JEP does not hold if we take $\kappa := \{(N, \tau) : (N, \tau) \models T_0)\}.$

• T be a complete L-theory with q.e.;

- $L_0 = L \cup \{R\}$, with R a unary predicate;
- $T_0 = T;$
- (M, R) a model of T_0 ;
- models in κ :

 $\{(N,Q):N\models T, \; (\operatorname{acl}_{\mathcal{T}}(\emptyset), Q\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\simeq (\operatorname{acl}_{\mathcal{T}}(\emptyset), R\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\};$

- morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.
- If ${\mathcal T}$ eliminates the quantifier \exists^∞ , ${\mathcal T}_{\rm rich}$ is the model companion of ${\mathcal T}_0.$

- T be a complete L-theory with q.e.;
- $L_0 = L \cup \{R\}$, with R a unary predicate;
- $T_0 = T;$
- (*M*, *R*) a model of *T*₀;
- models in κ :

 $\{(N,Q):N\models T, \; (\operatorname{acl}_{\mathcal{T}}(\emptyset), Q\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\simeq (\operatorname{acl}_{\mathcal{T}}(\emptyset), R\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\};$

- morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.
- If ${\mathcal T}$ eliminates the quantifier \exists^∞ , ${\mathcal T}_{\rm rich}$ is the model companion of ${\mathcal T}_0.$

- T be a complete L-theory with q.e.;
- $L_0 = L \cup \{R\}$, with R a unary predicate;
- $T_0 = T;$
- (*M*, *R*) a model of *T*₀;
- models in κ :

 $\{(N,Q):N\models T, \; (\operatorname{acl}_{\mathcal{T}}(\emptyset), Q\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\simeq (\operatorname{acl}_{\mathcal{T}}(\emptyset), R\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\};$

- morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.
- If ${\mathcal T}$ eliminates the quantifier \exists^∞ , ${\mathcal T}_{\rm rich}$ is the model companion of ${\mathcal T}_0.$

- T be a complete L-theory with q.e.;
- $L_0 = L \cup \{R\}$, with R a unary predicate;
- $T_0 = T;$
- (M, R) a model of T_0 ;
- models in κ :

 $\{(N,Q):N\models T, \; (\operatorname{acl}_{\mathcal{T}}(\emptyset), Q\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\simeq (\operatorname{acl}_{\mathcal{T}}(\emptyset), R\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\};$

- morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.
- If ${\mathcal T}$ eliminates the quantifier \exists^∞ , ${\mathcal T}_{\rm rich}$ is the model companion of ${\mathcal T}_0.$

- T be a complete L-theory with q.e.;
- $L_0 = L \cup \{R\}$, with R a unary predicate;
- $T_0 = T;$
- (M, R) a model of T_0 ;
- models in κ :

 $\{(N,Q):N\models T,\;(\operatorname{acl}_{\mathcal{T}}(\emptyset),Q\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\simeq(\operatorname{acl}_{\mathcal{T}}(\emptyset),R\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\};$

- morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.
- If ${\mathcal T}$ eliminates the quantifier \exists^∞ , ${\mathcal T}_{\rm rich}$ is the model companion of ${\mathcal T}_0.$

소리가 소문가 소문가 소문가

- T be a complete L-theory with q.e.;
- $L_0 = L \cup \{R\}$, with R a unary predicate;
- $T_0 = T;$
- (M, R) a model of T_0 ;
- models in κ:

 $\{(N,Q):N\models T,\;(\operatorname{acl}_{\mathcal{T}}(\emptyset),Q\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\simeq(\operatorname{acl}_{\mathcal{T}}(\emptyset),R\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\};$

• morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.

If ${\mathcal T}$ eliminates the quantifier \exists^∞ , ${\mathcal T}_{
m rich}$ is the model companion of ${\mathcal T}_0.$

- T be a complete L-theory with q.e.;
- $L_0 = L \cup \{R\}$, with R a unary predicate;
- $T_0 = T;$
- (*M*, *R*) a model of *T*₀;
- models in κ:

 $\{(N,Q):N\models T,\;(\operatorname{acl}_{\mathcal{T}}(\emptyset),Q\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\simeq(\operatorname{acl}_{\mathcal{T}}(\emptyset),R\cap\operatorname{acl}_{\mathcal{T}}(\emptyset))\};$

- morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.
- If ${\mathcal T}$ eliminates the quantifier $\exists^\infty,\ {\mathcal T}_{\rm rich}$ is the model companion of ${\mathcal T}_0.$

The setting: T a complete *L*-theory

N a countable model of *T* $L_0 = L \cup \{R\}$, where *R* is a finite tuple of function and relation symbols T_0 an \forall -axiomatizable expansion of *T* to L_0 .

Definition

The space of expansions of N is

 $\operatorname{Exp}(N, T_0) := \{ \sigma : (N, \sigma) \models T_0 \}.$

Lascar genericity: richness Truss/Ivanov genericity

Truss/Ivanov genericity

The setting: T a complete L-theory N a countable model of T

 $L_0 = L \cup \{R\}$, where R is a finite tuple of function and relation symbols T_0 an \forall -axiomatizable expansion of T to L_0 .

Definition

The space of expansions of N is

 $\operatorname{Exp}(N, T_0) := \{ \sigma : (N, \sigma) \models T_0 \}.$

The setting: *T* a complete *L*-theory *N* a countable model of *T* $L_0 = L \cup \{R\}$, where *R* is a finite tuple of function and relation symbols T_0 an \forall -axiomatizable expansion of *T* to L_0 .

Definition

The space of expansions of N is

 $\operatorname{Exp}(N, T_0) := \{ \sigma : (N, \sigma) \models T_0 \}.$

The setting: *T* a complete *L*-theory *N* a countable model of *T* $L_0 = L \cup \{R\}$, where *R* is a finite tuple of function and relation symbols T_0 an \forall -axiomatizable expansion of *T* to L_0 .

Definition

The space of expansions of N is

 $\operatorname{Exp}(N, T_0) := \{ \sigma : (N, \sigma) \models T_0 \}.$

The setting: *T* a complete *L*-theory *N* a countable model of *T* $L_0 = L \cup \{R\}$, where *R* is a finite tuple of function and relation symbols *T*₀ an \forall -axiomatizable expansion of *T* to L_0 .

Definition

The space of expansions of N is

$$\operatorname{Exp}(N, T_0) := \{ \sigma : (N, \sigma) \models T_0 \}.$$

イロン イヨン イヨン イヨン

Topology on $Exp(N, T_0)$: the one generated by the basic open sets of the form

$$[\phi]_{\mathsf{N}} := \{ \sigma : (\mathsf{N}, \sigma) \models \mathsf{T}_0 \cup \{\phi\} \},\$$

where ϕ is a quantifier–free *N*–sentence.

Fact

With this topology $Exp(N, T_0)$ is a Baire space.

Definition

An expansion $\sigma \in Exp(N, T_0)$ is **Truss-generic** if

 $\{\tau^g:g\in \mathrm{Aut}(N)\}$

is comeagre in $Exp(N, T_0)$.

Topology on $Exp(N, T_0)$: the one generated by the basic open sets of the form

$$[\phi]_{\mathsf{N}} := \{ \sigma : (\mathsf{N}, \sigma) \models \mathsf{T}_0 \cup \{\phi\} \},\$$

where ϕ is a quantifier–free *N*–sentence.

Fact

With this topology $Exp(N, T_0)$ is a Baire space.

Definition

An expansion $\sigma \in Exp(N, T_0)$ is **Truss-generic** if

 $\{\tau^g:g\in \mathrm{Aut}(N)\}$

is comeagre in $Exp(N, T_0)$.

Topology on $Exp(N, T_0)$: the one generated by the basic open sets of the form

$$[\phi]_{\mathsf{N}} := \{ \sigma : (\mathsf{N}, \sigma) \models \mathsf{T}_0 \cup \{\phi\} \},\$$

where ϕ is a quantifier–free *N*–sentence.

Fact

With this topology $Exp(N, T_0)$ is a Baire space.

Definition

An expansion $\sigma \in Exp(N, T_0)$ is **Truss-generic** if

$$\{\tau^g: g \in \operatorname{Aut}(N)\}$$

is comeagre in $Exp(N, T_0)$.

・ロン ・回と ・ヨン ・ヨン

Comparing generic expansions

The setting:

T a complete *L*-theory with q.e.

T is small, $N \models T$ is (the) countable saturated model

 $L_0 = L \cup \{R\}$, where R is a finite tuple of function and relation symbols

 T_0 an \forall -axiomatizable (modulo T) expansion of T to L_0

 κ is an inductive amalgamation class whose models are the models of \mathcal{T}_0

Is there a relationship between models of $T_{\rm rich}$ and Truss–generic expansions of N?

Comparing generic expansions

The setting:

- T a complete *L*-theory with q.e.
- T is small, $N \models T$ is (the) countable saturated model

 $L_0 = L \cup \{R\}$, where R is a finite tuple of function and relation symbols

 T_0 an \forall -axiomatizable (modulo T) expansion of T to L_0

 κ is an inductive amalgamation class whose models are the models of \mathcal{T}_0

Is there a relationship between models of $T_{\rm rich}$ and Truss–generic expansions of N?

Comparing generic expansions

The setting:

- T a complete *L*-theory with q.e.
- T is small, $N \models T$ is (the) countable saturated model
- $L_0 = L \cup \{R\}$, where R is a finite tuple of function and relation symbols

 T_0 an \forall -axiomatizable (modulo T) expansion of T to L_0

 κ is an inductive amalgamation class whose models are the models of \mathcal{T}_0

Is there a relationship between models of $T_{\rm rich}$ and Truss–generic expansions of N?

Comparing generic expansions

The setting:

- T a complete *L*-theory with q.e.
- T is small, $N \models T$ is (the) countable saturated model
- $L_0 = L \cup \{R\}$, where R is a finite tuple of function and relation symbols

 \mathcal{T}_0 an $\forall\text{-axiomatizable}\ (modulo\ \mathcal{T})$ expansion of \mathcal{T} to \mathcal{L}_0

 κ is an inductive amalgamation class whose models are the models of \mathcal{T}_0

Is there a relationship between models of $T_{\rm rich}$ and Truss–generic expansions of N?

Comparing generic expansions

The setting:

- T a complete *L*-theory with q.e.
- T is small, $N \models T$ is (the) countable saturated model
- $L_0 = L \cup \{R\}$, where R is a finite tuple of function and relation symbols
- T_0 an \forall -axiomatizable (modulo T) expansion of T to L_0

 κ is an inductive amalgamation class whose models are the models of \mathcal{T}_0

Is there a relationship between models of $T_{\rm rich}$ and Truss–generic expansions of *N*?

・ロト ・回ト ・ヨト ・ヨト

Comparing generic expansions

The setting:

- T a complete *L*-theory with q.e.
- T is small, $N \models T$ is (the) countable saturated model
- $L_0 = L \cup \{R\}$, where R is a finite tuple of function and relation symbols
- T_0 an \forall -axiomatizable (modulo T) expansion of T to L_0

 κ is an inductive amalgamation class whose models are the models of \mathcal{T}_0

Is there a relationship between models of $T_{\rm rich}$ and Truss–generic expansions of *N*?

소리가 소문가 소문가 소문가

The comparison in a special case The comparison in general

A special case

Further assumptions:

- T is ω -categorical;
- $T_{\rm rich}$ is model complete.

Let N be the countable model of T. Then:

Definition

An expansion $\sigma \in \text{Exp}(N, T_0)$ is **atomic** if it is an atomic model of T_{rich} .

The comparison in a special case The comparison in general

A special case

Further assumptions:

- T is ω -categorical;
- $T_{\rm rich}$ is model complete.

Let N be the countable model of T. Then:

Definition

An expansion $\sigma \in Exp(N, T_0)$ is atomic if it is an atomic model of T_{rich} .

Fact

- 1. The set of countable models of $T_{\rm rich}$ is comeagre in $Exp(N, T_0)$;
- 2. if (M, σ) is atomic, then $(M, \sigma) \models T_{\text{rich}}$;
- 3. if an atomic expansion exists, then the set of atomic expansions is comeagre in $Exp(N, T_0)$.

イロト イヨト イヨト イヨト
Let $\alpha \in \text{Exp}(N, T_0)$, i.e. $(N, \alpha) \in \kappa$. Tfae:

- α is atomic;
- α is Truss-generic.

Proof.

 (\Rightarrow) : let α be an atomic expansion. Then the set of atomic expansions is of the form $Y := \{\alpha^g : g \in \operatorname{Aut}(N)\}$. By the previous fact, Y is comeagre. But two comeagre sets of this form coincide. Hence Y is exactly the set of Truss-generic expansions.

 (\Leftarrow) : longer!

Let $\alpha \in \text{Exp}(N, T_0)$, i.e. $(N, \alpha) \in \kappa$. Tfae:

- α is atomic;
- α is Truss-generic.

Proof.

(\Rightarrow): let α be an atomic expansion. Then the set of atomic expansions is of the form $Y := \{\alpha^g : g \in \operatorname{Aut}(N)\}$. By the previous fact, Y is comeagre. But two comeagre sets of this form coincide. Hence Y is exactly the set of Truss-generic expansions.

 (\Leftarrow) : longer!

<ロ> (日) (日) (日) (日) (日)

Let $\alpha \in \text{Exp}(N, T_0)$, i.e. $(N, \alpha) \in \kappa$. Tfae:

- α is atomic;
- α is Truss-generic.

Proof.

(\Rightarrow): let α be an atomic expansion. Then the set of atomic expansions is of the form $Y := \{\alpha^g : g \in \operatorname{Aut}(N)\}$. By the previous fact, Y is comeagre. But two comeagre sets of this form coincide. Hence Y is exactly the set of Truss-generic expansions.

 (\Leftarrow) : longer!

Let $\alpha \in \text{Exp}(N, T_0)$, i.e. $(N, \alpha) \in \kappa$. Tfae:

- α is atomic;
- α is Truss-generic.

Proof.

(⇒): let α be an atomic expansion. Then the set of atomic expansions is of the form $Y := \{\alpha^g : g \in Aut(N)\}$. By the previous fact, Y is comeagre. But two comeagre sets of this form coincide. Hence Y is exactly the set of Truss-generic expansions.

 (\Leftarrow) : longer!

Let $\alpha \in \text{Exp}(N, T_0)$, i.e. $(N, \alpha) \in \kappa$. Tfae:

- α is atomic;
- α is Truss-generic.

Proof.

(⇒): let α be an atomic expansion. Then the set of atomic expansions is of the form $Y := \{\alpha^g : g \in Aut(N)\}$. By the previous fact, Y is comeagre. But two comeagre sets of this form coincide. Hence Y is exactly the set of Truss-generic expansions.

 (\Leftarrow) : longer!

イロン イヨン イヨン イヨン

Let $\alpha \in \text{Exp}(N, T_0)$, i.e. $(N, \alpha) \in \kappa$. Tfae:

- α is atomic;
- α is Truss-generic.

Proof.

 (\Rightarrow) : let α be an atomic expansion. Then the set of atomic expansions is of the form $Y := \{\alpha^g : g \in \operatorname{Aut}(N)\}$. By the previous fact, Y is comeagre. But two comeagre sets of this form coincide. Hence Y is exactly the set of Truss-generic expansions.

 (\Leftarrow) : longer!

イロン イヨン イヨン イヨン

Let $\alpha \in \text{Exp}(N, T_0)$, i.e. $(N, \alpha) \in \kappa$. Tfae:

- α is atomic;
- α is Truss-generic.

Proof.

 (\Rightarrow) : let α be an atomic expansion. Then the set of atomic expansions is of the form $Y := \{\alpha^g : g \in \operatorname{Aut}(N)\}$. By the previous fact, Y is comeagre. But two comeagre sets of this form coincide. Hence Y is exactly the set of Truss-generic expansions.

(\Leftarrow): longer!

・ロン ・回と ・ヨン ・ヨン

Introduction Generic expansions Comparing generic expansions

The comparison in a special case The comparison in general

How to generalize the comparison

Idea: get rid of the assumptions

- *T* ω-categorical;
- $T_{\rm rich}$ model complete.

Idea:

1. If $N\models \mathcal{T}$ is countable and saturated, $\mathcal{T}_{
m rich}$ model-complete, then

Truss-generic expansions of N = 'smooth' prime models of $T_{\rm rich}$.

2. If $N \models T$ is countable and saturated, then

Truss-generic expansions of N = 'smooth', 'e-atomic' models of T_{rich} .

Introduction Generic expansions Comparing generic expansions

The comparison in a special case The comparison in general

How to generalize the comparison

Idea: get rid of the assumptions

- *T* ω-categorical;
- $T_{\rm rich}$ model complete.

Idea:

1. If $N \models T$ is countable and saturated, $T_{\rm rich}$ model-complete, then

Truss-generic expansions of N = 'smooth' prime models of $T_{\rm rich}$.

2. If $N \models T$ is countable and saturated, then

Truss-generic expansions of N = 'smooth', 'e-atomic' models of T_{rich} .

How to generalize the comparison

Idea: get rid of the assumptions

- *T* ω-categorical;
- $T_{\rm rich}$ model complete.

Idea:

1. If $N \models T$ is countable and saturated, $T_{\rm rich}$ model-complete, then

Truss-generic expansions of N = 'smooth' prime models of $T_{\rm rich}$.

2. If $N \models T$ is countable and saturated, then

Truss-generic expansions of N = 'smooth', 'e-atomic' models of T_{rich} .

- A partial T₀-type is **quasifinite** if it contains only finitely many formulae not in L.
- (M, σ) is a smooth model (or σ is a smooth expansion) if it realizes every quantifier free quasifinite type which:
 - has finitely many parameters;
 - 2 is finitely consistent in (M, σ) .

- A partial T₀-type is **quasifinite** if it contains only finitely many formulae not in L.
- (M, σ) is a **smooth** model (or σ is a smooth expansion) if it realizes every quantifier free quasifinite type which:
 - has finitely many parameters;
 - **2** is finitely consistent in (M, σ) .

・ロン ・回と ・ヨン・

Fact

X is a comeagre subset of $Exp(N, T_0)$.

Definition

Let $p(x) \in S(\emptyset)$ be realized in some $(N, \sigma) \in X$, and let $p_{\uparrow_1}(x)$ be the set of universal and existential formulae in p. Then p is **e-isolated** if there is a quasifinite type $\pi(x)$ such that the set

 $\{q_{\uparrow_1}(x): q \text{ is realized in some } (N,\sigma) \in X \text{ and } \pi(x) \subseteq q(x)\}$

is the singleton $\{p_{\uparrow 1}(x)\}$. A tuple is e-isolated if its type is.

Fact

X is a comeagre subset of $Exp(N, T_0)$.

Definition

Let $p(x) \in S(\emptyset)$ be realized in some $(N, \sigma) \in X$, and let $p_{\uparrow_1}(x)$ be the set of universal and existential formulae in p. Then p is **e-isolated** if there is a quasifinite type $\pi(x)$ such that the set

 $\{q_{\uparrow_1}(x): q \text{ is realized in some } (N, \sigma) \in X \text{ and } \pi(x) \subseteq q(x)\}$

is the singleton $\{p_{\uparrow 1}(x)\}$. A tuple is e-isolated if its type is.

Fact

X is a comeagre subset of $Exp(N, T_0)$.

Definition

Let $p(x) \in S(\emptyset)$ be realized in some $(N, \sigma) \in X$, and let $p_{\uparrow_1}(x)$ be the set of universal and existential formulae in p. Then p is **e-isolated** if there is a quasifinite type $\pi(x)$ such that the set

 $\{q_{\uparrow_1}(x): q \text{ is realized in some } (N, \sigma) \in X \text{ and } \pi(x) \subseteq q(x)\}$

is the singleton $\{p_{\uparrow_1}(x)\}$. A tuple is e-isolated if its type is.

Fact

X is a comeagre subset of $Exp(N, T_0)$.

Definition

Let $p(x) \in S(\emptyset)$ be realized in some $(N, \sigma) \in X$, and let $p_{\uparrow_1}(x)$ be the set of universal and existential formulae in p. Then p is **e-isolated** if there is a quasifinite type $\pi(x)$ such that the set

 $\{q_{\uparrow_1}(x): q \text{ is realized in some } (N, \sigma) \in X \text{ and } \pi(x) \subseteq q(x)\}$

is the singleton $\{p_{\uparrow\uparrow}(x)\}$. A tuple is e-isolated if its type is.

An expansion $\alpha \in X$ is **e-atomic** if every finite tuple in N is *e-isolated*.

Remark

If T is ω -categorical, any expansion is smooth. If $T_{\rm rich}$ is model-complete, every model of $T_{\rm rich}$ is e.c. and any formula is equivalent to an existential one. Hence, when both hypotheses hold a model is e-atomic if and only if it is atomic.

An expansion $\alpha \in X$ is **e-atomic** if every finite tuple in N is *e-isolated*.

Remark

If T is ω -categorical, any expansion is smooth.

If $T_{\rm rich}$ is model-complete, every model of $T_{\rm rich}$ is e.c. and any formula is equivalent to an existential one. Hence, when both hypotheses hold a model is e-atomic if and only if it is atomic.

An expansion $\alpha \in X$ is **e-atomic** if every finite tuple in N is *e-isolated*.

Remark

If T is ω -categorical, any expansion is smooth. If $T_{\rm rich}$ is model-complete, every model of $T_{\rm rich}$ is e.c. and any formula is equivalent to an existential one.

Hence, when both hypotheses hold a model is e-atomic if and only if it is atomic.

An expansion $\alpha \in X$ is **e-atomic** if every finite tuple in N is *e-isolated*.

Remark

If T is ω -categorical, any expansion is smooth. If $T_{\rm rich}$ is model-complete, every model of $T_{\rm rich}$ is e.c. and any formula is equivalent to an existential one. Hence, when both hypotheses hold a model is e-atomic if and only if it is atomic.

Introduction Generic expansions Comparing generic expansions

The comparison in a special case The comparison in general

Theorem

Let T be small, $N \models T$ the countable saturated model, $\alpha \in Exp(N, T_0)$. Tfae:

- **1** α is e-atomic;
- **2** α is Truss-generic.

Theorem

Let S_x be the set of types of the form $p_{|_1}(x)$, where p(x) is some complete parameter free type realized in some e.c. smooth expansion of N. Then S_x can be equipped with a topology so that the following are equivalent:

- Truss-generic expansions exist;
- for every finite x, the isolated points are dense in S_x .

Introduction Generic expansions Comparing generic expansions

The comparison in a special case The comparison in general

Theorem

Let T be small, $N \models T$ the countable saturated model, $\alpha \in Exp(N, T_0)$. Tfae:

- **1** α is e-atomic;
- **2** α is Truss-generic.

Theorem

Let S_x be the set of types of the form $p_{\uparrow_1}(x)$, where p(x) is some complete parameter free type realized in some e.c. smooth expansion of N. Then S_x can be equipped with a topology so that the following are equivalent:

- Truss-generic expansions exist;
- for every finite x, the isolated points are dense in S_x .

・ロン ・回と ・ヨン ・ヨン