Model theory of Steiner triple systems

Silvia Barbina ${ }^{1}$
joint work with Enrique Casanovas ${ }^{2}$
${ }^{1}$ The Open University
${ }^{2}$ Universitat de Barcelona
UMI-SIMAI PTM Joint Meeting, September 2018

Steiner triple systems

Definition

A finite Steiner triple system (STS) of order n is a pair (V, \mathcal{B}) where:

- V is a set of n elements;
- \mathcal{B} is a collection of 3-element subsets of V (the blocks) such that any two $x, y \in V$ are contained in exactly one block.

Steiner triple systems

Definition

A finite Steiner triple system (STS) of order n is a pair (V, \mathcal{B}) where:

- V is a set of n elements;
- \mathcal{B} is a collection of 3-element subsets of V (the blocks) such that any two $x, y \in V$ are contained in exactly one block.
A set V with a collection of 3-element subsets is a partial STS if any two elements of V belong to at most one block.

Steiner triple systems

Definition

A finite Steiner triple system (STS) of order n is a pair (V, \mathcal{B}) where:

- V is a set of n elements;
- \mathcal{B} is a collection of 3-element subsets of V (the blocks) such that any two $x, y \in V$ are contained in exactly one block.
A set V with a collection of 3-element subsets is a partial STS if any two elements of V belong to at most one block.

Kirkman's schoolgirl problem

Fifteen girls in a school take a walk in rows of three for seven days in succession. Is there an arrangement such that no two girls walk together in a row more than once?
(Thomas Penyngton Kirkman, 1850)

STSs appear in

- combinatorial design theory (they are balanced incomplete block designs)
- design of experiments
- coding theory.

More general Steiner systems are connected to the Mathieu groups.

Kirkman's schoolgirl problem

Fifteen girls in a school take a walk in rows of three for seven days in succession. Is there an arrangement such that no two girls walk together in a row more than once?
(Thomas Penyngton Kirkman, 1850)

STSs appear in

- combinatorial design theory (they are balanced incomplete block designs)
- design of experiments
- coding theory.

More general Steiner systems are connected to the Mathieu groups.

Kirkman's schoolgirl problem

Fifteen girls in a school take a walk in rows of three for seven days in succession. Is there an arrangement such that no two girls walk together in a row more than once?
(Thomas Penyngton Kirkman, 1850)

STSs appear in

- combinatorial design theory (they are balanced incomplete block designs)
- design of experiments
- coding theory.

More general Steiner systems are connected to the Mathieu groups.

Kirkman's schoolgirl problem

Fifteen girls in a school take a walk in rows of three for seven days in succession. Is there an arrangement such that no two girls walk together in a row more than once?
(Thomas Penyngton Kirkman, 1850)

STSs appear in

- combinatorial design theory (they are balanced incomplete block designs)
- design of experiments
- coding theory.

More general Steiner systems are connected to the Mathieu groups.

Kirkman's schoolgirl problem

Fifteen girls in a school take a walk in rows of three for seven days in succession. Is there an arrangement such that no two girls walk together in a row more than once?
(Thomas Penyngton Kirkman, 1850)

STSs appear in

- combinatorial design theory (they are balanced incomplete block designs)
- design of experiments
- coding theory.

More general Steiner systems are connected to the Mathieu groups.

- When n is finite, an STS of order n exists if and only if $n \equiv 1$ or 3 $(\bmod 6)$.
- If we allow $|V| \geq \omega$, the pair (V, \mathcal{B}) is an infinite STS.

We can describe blocks via

- a ternary relation R where $R(x, y, z)$ if and only if $\{x, y, z\}$ is a block,
- a binary operation • defined by

$$
x \cdot y=z \operatorname{iff}\{x, y, z\} \text { is a block. }
$$

When blocks are described by a relation, a substructure of an STS is a partial STS.
In a functional language, substructures are STSs.

- When n is finite, an STS of order n exists if and only if $n \equiv 1$ or 3 $(\bmod 6)$.
- If we allow $|V| \geq \omega$, the pair (V, \mathcal{B}) is an infinite STS.

We can describe blocks via

- a ternary relation R where $R(x, y, z)$ if and only if $\{x, y, z\}$ is a block,
- a binary operation • defined by

$$
x \cdot y=z \operatorname{iff}\{x, y, z\} \text { is a block. }
$$

When blocks are described by a relation, a substructure of an STS is a partial STS.
In a functional language, substructures are STSs.

- When n is finite, an STS of order n exists if and only if $n \equiv 1$ or 3 $(\bmod 6)$.
- If we allow $|V| \geq \omega$, the pair (V, \mathcal{B}) is an infinite STS.

We can describe blocks via

- a binary operation • defined by

$$
x \cdot y=z \text { iff }\{x, y, z\} \text { is a block. }
$$

When blocks are described by a relation, a substructure of an STS is a partial STS.
In a functional language, substructures are STSs.

- When n is finite, an STS of order n exists if and only if $n \equiv 1$ or 3 $(\bmod 6)$.
- If we allow $|V| \geq \omega$, the pair (V, \mathcal{B}) is an infinite STS.

We can describe blocks via

- a ternary relation R where $R(x, y, z)$ if and only if $\{x, y, z\}$ is a block, or
- a binary operation defined by

$$
x \cdot y=z \text { iff }\{x, y, z\} \text { is a block. }
$$

When blocks are described by a relation, a substructure of an STS is a
 In a functional language, substructures are STSs.

- When n is finite, an STS of order n exists if and only if $n \equiv 1$ or 3 $(\bmod 6)$.
- If we allow $|V| \geq \omega$, the pair (V, \mathcal{B}) is an infinite STS.

We can describe blocks via

- a ternary relation R where $R(x, y, z)$ if and only if $\{x, y, z\}$ is a block, or
- a binary operation • defined by

$$
x \cdot y=z \text { iff }\{x, y, z\} \text { is a block. }
$$

When blocks are described by a relation, a substructure of an STS is a
 In a functional language, substructures are STSs.

- When n is finite, an STS of order n exists if and only if $n \equiv 1$ or 3 $(\bmod 6)$.
- If we allow $|V| \geq \omega$, the pair (V, \mathcal{B}) is an infinite STS.

We can describe blocks via

- a ternary relation R where $R(x, y, z)$ if and only if $\{x, y, z\}$ is a block, or
- a binary operation • defined by

$$
x \cdot y=z \text { iff }\{x, y, z\} \text { is a block. }
$$

When blocks are described by a relation, a substructure of an STS is a partial STS.

- When n is finite, an STS of order n exists if and only if $n \equiv 1$ or 3 $(\bmod 6)$.
- If we allow $|V| \geq \omega$, the pair (V, \mathcal{B}) is an infinite STS.

We can describe blocks via

- a ternary relation R where $R(x, y, z)$ if and only if $\{x, y, z\}$ is a block, or
- a binary operation • defined by

$$
x \cdot y=z \text { iff }\{x, y, z\} \text { is a block. }
$$

When blocks are described by a relation, a substructure of an STS is a partial STS.
In a functional language, substructures are STSs.

STS axioms

We choose a functional language, so that an STS is a structure (A, \cdot) where is a binary operation on A such that
(1) $x \cdot y=y \cdot x$
(2) $x \cdot x=x$
(3) $x \cdot(x \cdot y)=y$.

Definition
$T_{\text {STS }}$ is the theory that contains axioms 1-3 above.
$T_{\text {STS }}$ is a universal theory.

STS axioms

We choose a functional language, so that an STS is a structure (A, \cdot) where - is a binary operation on A such that
(1) $x \cdot y=y \cdot x$
(2) $x \cdot x=x$
(3) $x \cdot(x \cdot y)=y$.

Definition

$T_{\text {STS }}$ is the theory that contains axioms 1-3 above.
$T_{\text {STS }}$ is a universal theory.

STS axioms

We choose a functional language, so that an STS is a structure (A, \cdot) where is a binary operation on A such that
(1) $x \cdot y=y \cdot x$
(2) $x \cdot x=x$
(3) $x \cdot(x \cdot y)=y$.

Definition

$T_{\text {STS }}$ is the theory that contains axioms 1-3 above.
$T_{\text {STS }}$ is a universal theory.

Extension properties

Fact

(1) Every finite partial STS can be embedded in a finite STS.
(2) Every infinite partial STS can be embedded in an STS of the same cardinality.

Extension properties

Fact

(1) Every finite partial STS can be embedded in a finite STS.
(2) Every infinite partial STS can be embedded in an STS of the same cardinality.

The Fraïssé limit of the finite Steiner triple systems

The class \mathcal{C} of all finite Steiner triple systems has

- the Joint Embedding and the Amalgamation Properties
- the Hereditary Property
- countably many isomorphism types.

Therefore \mathcal{C} has a Fraïssé limit: the unique (up to isomorphism) countable Steiner triple system M_{F} which is ultrahomogeneous and universal (for finite Steiner triple systems)
M_{F} is locally finite. It is not w-categorical
Questions
What can we say about Th($\left.M_{F}\right)$? Can we describe its models? Does it have q.e.?

The Fraïssé limit of the finite Steiner triple systems

The class \mathcal{C} of all finite Steiner triple systems has

- the Joint Embedding and the Amalgamation Properties
- the Hereditary Property
- countably many isomorphism types.

```
Therefore \mathcal{C}}\mathrm{ has a Fraïssé limit: the unique (up to isomorphism) countable
Steiner triple system MF which is ultrahomogeneous and universal (for
finite Steiner triple systems)
```

M_{F} is locally finite. It is not ω-categorical
Questions
What can we say about $\operatorname{Th}\left(M_{F}\right)$? Can we describe its models? Does it

The Fraïssé limit of the finite Steiner triple systems

The class \mathcal{C} of all finite Steiner triple systems has

- the Joint Embedding and the Amalgamation Properties
- the Hereditary Property
- countably many isomorphism types.
\square
Therefore \mathcal{C} has a Fraïssé limit: the unique (up to isomorphism) countable Steiner triple system M_{F} which is ultrahomogeneous and universal (for finite Steiner triple systems)
M_{F} is locally finite. It is not ω-categorical
Questions
What can we say about $\operatorname{Th}\left(M_{F}\right)$? Can we describe its models? Does it

The Fraïssé limit of the finite Steiner triple systems

The class \mathcal{C} of all finite Steiner triple systems has

- the Joint Embedding and the Amalgamation Properties
- the Hereditary Property
- countably many isomorphism types.

Therefore \mathcal{C} has a Fraïssé limit: the unique (up to isomorphism) countable Steiner triple system M_{F} which is ultrahomogeneous and universal (for finite Steiner triple systems).
M_{F} is locally finite. It is not ω-categorical.
Questions
What can we say about $\operatorname{Th}\left(M_{F}\right)$? Can we describe its models? Does it

The Fraïssé limit of the finite Steiner triple systems

The class \mathcal{C} of all finite Steiner triple systems has

- the Joint Embedding and the Amalgamation Properties
- the Hereditary Property
- countably many isomorphism types.

Therefore \mathcal{C} has a Fraïssé limit: the unique (up to isomorphism) countable Steiner triple system M_{F} which is ultrahomogeneous and universal (for finite Steiner triple systems).
M_{F} is locally finite. It is not ω-categorical.

Questions

What can we say about $\operatorname{Th}\left(M_{F}\right)$? Can we describe its models? Does it have q.e.?

Axiomatising $\operatorname{Th}\left(M_{F}\right)$

Definition

Let B be a finite partial STS. Then

- δ_{B} is a formula that describes the diagram of B
- $A \subseteq B$ is relatively closed in B if for every $a, b \in A$ and $c \in B$, if $a \cdot b=c$ then $c \in A$.

```
Definition
If B is a finite partial STS and A\subseteqB a relatively closed subset, then
\phi(A,B)}=\forall\overline{x}(\mp@subsup{\delta}{A}{}(\overline{x})->\exists\overline{y}\mp@subsup{\delta}{B}{}(\overline{x},\overline{y})
Let }\Delta={\mp@subsup{\phi}{(A,B)}{}:B\mathrm{ is a finite partial STS and A}\subseteqB\mathrm{ is a relatively
closed subset}
```


Axiomatising $\operatorname{Th}\left(M_{F}\right)$

Definition

Let B be a finite partial STS. Then

- δ_{B} is a formula that describes the diagram of B
- $A \subseteq B$ is relatively closed in B if for every $a, b \in A$ and $c \in B$, if $a \cdot b=c$ then $c \in A$.

Definition
If B is a finite partial STS and $A \subseteq B$ a relatively closed subset, then $\phi_{(A, B)}=\forall \bar{x}\left(\delta_{A}(\bar{x}) \rightarrow \exists \bar{y} \delta_{B}(\bar{x}, \bar{y})\right)$

Let $\Delta=\left\{\phi_{(A, B)}: B\right.$ is a finite partial STS and $A \subseteq B$ is a relatively closed subset\}

Axiomatising $\operatorname{Th}\left(M_{F}\right)$

Definition

Let B be a finite partial STS. Then

- δ_{B} is a formula that describes the diagram of B
- $A \subseteq B$ is relatively closed in B if for every $a, b \in A$ and $c \in B$, if $a \cdot b=c$ then $c \in A$.

Definition

If B is a finite partial STS and $A \subseteq B$ a relatively closed subset, then

$$
\phi_{(A, B)}=\forall \bar{x}\left(\delta_{A}(\bar{x}) \rightarrow \exists \bar{y} \delta_{B}(\bar{x}, \bar{y})\right) .
$$

Let $\Delta=\left\{\phi_{(A, B)}: B\right.$ is a finite partial STS and $A \subseteq B$ is a relatively

Axiomatising $\operatorname{Th}\left(M_{F}\right)$

Definition

Let B be a finite partial STS. Then

- δ_{B} is a formula that describes the diagram of B
- $A \subseteq B$ is relatively closed in B if for every $a, b \in A$ and $c \in B$, if $a \cdot b=c$ then $c \in A$.

Definition

If B is a finite partial $S T S$ and $A \subseteq B$ a relatively closed subset, then

$$
\phi_{(A, B)}=\forall \bar{x}\left(\delta_{A}(\bar{x}) \rightarrow \exists \bar{y} \delta_{B}(\bar{x}, \bar{y})\right) .
$$

Let $\Delta=\left\{\phi_{(A, B)}: B\right.$ is a finite partial STS and $A \subseteq B$ is a relatively closed subset $\}$.

The theory of M_{F}
 Let $T_{\mathrm{STS}}^{*}=\Delta \cup T_{\mathrm{STS}}$.

Fact
$M_{F} \models T_{\mathrm{STS}}^{*}$.

There is more.
Theorem
The theory $T_{\text {STS }}^{*}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- is the model companion of $T_{\text {STS }}$
- is complete
- has quantifier elimination.

```
MF is a prime model of TSTS
```

The theory of M_{F}
Let $T_{\text {STS }}^{*}=\Delta \cup T_{\text {STS }}$.
Fact
$M_{F} \models T_{\text {STS }}^{*}$.

There is more.
Theorem
The theory $T_{\text {STS }}^{*}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- is the model companion of $T_{\text {STS }}$
- is complete
- has quantifier elimination.
M_{F} is a prime model of $T_{\text {STS }}^{*}$.

The theory of M_{F}
Let $T_{\text {STS }}^{*}=\Delta \cup T_{\text {STS }}$.
Fact
$M_{F} \models T_{\text {STS }}^{*}$.

There is more.
Theorem
The theory $T_{\text {STS }}^{*}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- is the model companion of $T_{\text {STS }}$
- is complete
- has quantifier elimination.

The theory of M_{F}
Let $T_{\text {STS }}^{*}=\Delta \cup T_{\text {STS }}$.
Fact
$M_{F} \models T_{\text {STS }}^{*}$.

There is more.
Theorem
The theory $T_{\text {STS }}^{*}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- is the model companion of $T_{\text {STS }}$
- is complete
- has quantifier elimination.
M_{F} is a prime model of T_{STC}^{*}.

The theory of M_{F}
Let $T_{\text {STS }}^{*}=\Delta \cup T_{\text {STS }}$.
Fact
$M_{F} \models T_{\text {STS }}^{*}$.

There is more.
Theorem
The theory $T_{\text {STS }}^{*}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- is the model companion of T_{STS}
- is complete
- has quantifier elimination.

The theory of M_{F}
Let $T_{\text {STS }}^{*}=\Delta \cup T_{\text {STS }}$.
Fact
$M_{F} \models T_{\text {STS }}^{*}$.

There is more.
Theorem
The theory $T_{\text {STS }}^{*}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- is the model companion of $T_{\text {STS }}$
- is complete
- has quantifier elimination.

The theory of M_{F}
Let $T_{\text {STS }}^{*}=\Delta \cup T_{\text {STS }}$.
Fact
$M_{F} \models T_{\text {STS }}^{*}$.

There is more.
Theorem
The theory $T_{\text {STS }}^{*}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- is the model companion of $T_{\text {STS }}$
- is complete
- has quantifier elimination.
M_{F} is a prime model of $T_{\text {STS }}^{*}$.

Proof (sketch).

- $T_{\text {STS }}$ is universal, so every model extends to an e.c. model
- T_{STS}^{*} axiomatises the e.c. models of T_{STS}

Therefore $T_{\text {STS }}^{*}$ is the model companion of $T_{\text {STS }}$.
In particular, T_{STS}^{*} is model complete.
$T_{S T S}^{*}$ has the joint embedding nronerty (because TSTS has), and it is model complete. Therefore $T_{\text {STS }}^{*}$ is complete.
$T_{\text {STS }}^{*}$ has the amalgamation property (because $T_{\text {STS }}$ has), and it is model complete.

Therefore $T_{\text {STS }}^{*}$ has quantifier elimination.

Proof (sketch).

- $T_{\text {STS }}$ is universal, so every model extends to an e.c. model
- T_{STS}^{*} axiomatises the e.c. models of T_{STS}

Therefore T_{STS}^{*} is the model companion of T_{STS}.
In particular, $T_{\text {STS }}^{*}$ is model complete.
$T_{\text {STS }}^{*}$ has the joint embedding property (because $T_{\text {STS }}$ has), and it is model complete. Therefore $T_{\text {STS }}^{*}$ is complete.
$T_{\text {STS }}^{*}$ has the amalgamation property (because $T_{\text {STS }}$ has), and it is model complete.

Therefore $T_{\text {STS }}$ has quantifier elimination.

Proof (sketch).

- $T_{\text {STS }}$ is universal, so every model extends to an e.c. model
- T_{STS}^{*} axiomatises the e.c. models of T_{STS}

Therefore $T_{\text {STS }}^{*}$ is the model companion of T_{STS}.
In particular, $T_{\text {STS }}^{*}$ is model complete.
 complete.

Therefore T, has quantifier elimination.

Proof (sketch).

- $T_{\text {STS }}$ is universal, so every model extends to an e.c. model
- T_{STS}^{*} axiomatises the e.c. models of $T_{\text {STS }}$

Therefore T_{STS}^{*} is the model companion of T_{STS}.
In particular, $T_{\text {STS }}^{*}$ is model complete.
T_{STS}^{*} has the joint embedding property (because $T_{\text {STS }}$ has), and it is model complete. Therefore $T_{\text {STS }}^{*}$ is complete.
$T_{\text {STS }}^{*}$ has the amalgamation property (because $T_{\text {STS }}$ has), and it is model complete.

Therefore $\boldsymbol{T}_{\text {sis }}$ has quantifier elimination.

Proof (sketch).

- $T_{\text {STS }}$ is universal, so every model extends to an e.c. model
- T_{STS}^{*} axiomatises the e.c. models of T_{STS}

Therefore T_{STS}^{*} is the model companion of T_{STS}.
In particular, $T_{\text {STS }}^{*}$ is model complete.
T_{STS}^{*} has the joint embedding property (because $T_{\text {STS }}$ has), and it is model complete. Therefore $T_{\text {STS }}^{*}$ is complete.
T_{STS}^{*} has the amalgamation property (because T_{STS} has), and it is model complete.

Therefore T_{STS}^{*} has quantifier elimination.

More on $T_{\text {STS }}^{*}$

Theorem
The theory $T_{\text {STS }}^{*}$

- is not small
- is TP2
- is NSOP_{1}
- has elimination of hyperimaginaries and weak elimination of imaginaries.

More on $T_{\text {STS }}^{*}$

Theorem
The theory $T_{\text {STS }}^{*}$

- is not small
- is TP_{2}
- is NSOP_{1}
- has elimination of hyperimaginaries and weak elimination of imaginaries.

More on $T_{\text {STS }}^{*}$

Theorem
The theory $T_{\text {STS }}^{*}$

- is not small
- is TP_{2}
- is NSOP_{1}
- has elimination of hyperimaginaries and weak elimination of imaginaries.

More on $T_{\text {STS }}^{*}$

Theorem
The theory $T_{\text {STS }}^{*}$

- is not small
- is TP_{2}
- is NSOP_{1}
- has elimination of hyperimaginaries and weak elimination of imaginaries.

Definition

A formula $\varphi(\bar{x} ; \bar{y})$ has the tree property of the second kind $\left(\mathrm{TP}_{2}\right)$ in T if in the monster model of T there is an array of tuples $\left(\bar{a}_{i j} \mid i, j<\omega\right)$ and some natural number k such that

- for each $i<\omega$ the set $\left\{\varphi\left(\bar{x}, \bar{a}_{i j}\right) \mid j<\omega\right\}$ is k-inconsistent
- for each $f: \omega \rightarrow \omega$ the path $\left\{\varphi\left(\bar{x}, \bar{a}_{i f(i)}\right) \mid i<\omega\right\}$ is consistent.

We say that T is TP_{2} if some formula has TP_{2} in T.

$$
\begin{array}{llll}
\bar{a}_{00} & \bar{a}_{01} & \bar{a}_{02} & \bar{a}_{03} \\
\bar{a}_{10} & \bar{a}_{11} & \bar{a}_{12} & \bar{a}_{13} \\
\bar{a}_{20} & \bar{a}_{21} & \bar{a}_{22} & \bar{a}_{23}
\end{array}
$$

Definition

A formula $\varphi(\bar{x} ; \bar{y})$ has the tree property of the second kind $\left(\mathrm{TP}_{2}\right)$ in T if in the monster model of T there is an array of tuples $\left(\bar{a}_{i j} \mid i, j<\omega\right)$ and some natural number k such that

- for each $i<\omega$ the set $\left\{\varphi\left(\bar{x}, \bar{a}_{i j}\right) \mid j<\omega\right\}$ is k-inconsistent
- for each $f: \omega \rightarrow \omega$ the path $\left\{\varphi\left(\bar{x}, \bar{a}_{i f(i)}\right) \mid i<\omega\right\}$ is consistent.

$$
\begin{array}{llll}
\bar{a}_{00} & \bar{a}_{01} & \bar{a}_{02} & \bar{a}_{03} \\
\bar{a}_{10} & \bar{a}_{11} & \bar{a}_{12} & \bar{a}_{13} \\
\bar{a}_{20} & \bar{a}_{21} & \bar{a}_{22} & \bar{a}_{23}
\end{array}
$$

Definition

A formula $\varphi(\bar{x} ; \bar{y})$ has the tree property of the second kind $\left(\mathrm{TP}_{2}\right)$ in T if in the monster model of T there is an array of tuples $\left(\bar{a}_{i j} \mid i, j<\omega\right)$ and some natural number k such that

- for each $i<\omega$ the set $\left\{\varphi\left(\bar{x}, \bar{a}_{i j}\right) \mid j<\omega\right\}$ is k-inconsistent
- for each $f: \omega \rightarrow \omega$ the path $\left\{\varphi\left(\bar{x}, \bar{a}_{i f(i)}\right) \mid i<\omega\right\}$ is consistent. We say that T is TP_{2} if some formula has TP_{2} in T.

\bar{a}_{00}	\bar{a}_{01}	\bar{a}_{02}	\bar{a}_{03}	\ldots
\bar{a}_{10}	\bar{a}_{11}	\bar{a}_{12}	\bar{a}_{13}	\ldots
\bar{a}_{20}	\bar{a}_{21}	\bar{a}_{22}	\bar{a}_{23}	\ldots

Proposition

The formula

$$
\varphi\left(x ; y_{1}, y_{2}, y_{3}\right) \equiv \quad x=\left(y_{1} \cdot\left(y_{2} \cdot\left(y_{3} \cdot x\right)\right)\right)
$$

has TP_{2} in T_{Sq}^{*}.

Proof (sketch)

We build

- an array $\left(a_{i} b_{i} c_{i j} \mid i, j<\omega\right)$
- a sequence $\left(d_{f} \mid f \in \omega^{\omega}\right)$

and define a partial STS such that

- for each $i \in \omega$, the set $\left\{\varphi\left(x ; a_{i}, b_{i}, c_{i j}\right) \mid j<\omega\right\}$ is 2-inconsistent
- for each $f \in \omega^{\omega}$, the element d_{f} realizes $\left\{\varphi\left(x ; a_{i}, b_{i}, c_{i f(i)}\right) \mid i<\omega\right\}$.

Proposition

The formula

$$
\varphi\left(x ; y_{1}, y_{2}, y_{3}\right) \equiv \quad x=\left(y_{1} \cdot\left(y_{2} \cdot\left(y_{3} \cdot x\right)\right)\right)
$$

```
has TP
```


Proof (sketch).

We build

- an array $\left(a_{i} b_{i} c_{i j} \mid i, j<\omega\right)$
- a sequence $\left(d_{f} \mid f \in \omega^{\omega}\right)$

and define a partial STS such that

- for each $i \in \omega$, the set $\left\{\varphi\left(x ; a_{i}, b_{i}, c_{i j}\right) \mid j<\omega\right\}$ is 2-inconsistent
- for each $f \in \omega^{\omega}$, the element d_{f} realizes $\left\{\varphi\left(x ; a_{i}, b_{i}, c_{i f}(i)\right) \mid i<\omega\right\}$

Proposition

The formula

$$
\varphi\left(x ; y_{1}, y_{2}, y_{3}\right) \equiv \quad x=\left(y_{1} \cdot\left(y_{2} \cdot\left(y_{3} \cdot x\right)\right)\right)
$$

```
has TP
```


Proof (sketch).

We build

- an array $\left(a_{i} b_{i} c_{i j} \mid i, j<\omega\right)$
- a sequence $\left(d_{f} \mid f \in \omega^{\omega}\right)$
and define a partial STS such that
- for each $i \in \omega$, the set $\left\{\varphi\left(x ; a_{i}, b_{i}, c_{i j}\right) \mid j<\omega\right\}$ is 2-inconsistent
- for each $f \in \omega^{\omega}$, the element d_{f} realizes $\left\{\varphi\left(x ; a_{i}, b_{i}, c_{i f(i)}\right) \mid i<\omega\right\}$

Proposition

The formula

$$
\varphi\left(x ; y_{1}, y_{2}, y_{3}\right) \equiv \quad x=\left(y_{1} \cdot\left(y_{2} \cdot\left(y_{3} \cdot x\right)\right)\right)
$$

```
has TP
```

Proof (sketch).
We build

- an array $\left(a_{i} b_{i} c_{i j} \mid i, j<\omega\right)$
- a sequence $\left(d_{f} \mid f \in \omega^{\omega}\right)$
and define a partial STS such that
- for each $i \in \omega$, the set $\left\{\varphi\left(x ; a_{i}, b_{i}, c_{i j}\right) \mid j<\omega\right\}$ is 2-inconsistent

Proposition

The formula

$$
\varphi\left(x ; y_{1}, y_{2}, y_{3}\right) \equiv \quad x=\left(y_{1} \cdot\left(y_{2} \cdot\left(y_{3} \cdot x\right)\right)\right)
$$

```
has TP
```

Proof (sketch).
We build

- an array $\left(a_{i} b_{i} c_{i j} \mid i, j<\omega\right)$
- a sequence $\left(d_{f} \mid f \in \omega^{\omega}\right)$
and define a partial STS such that
- for each $i \in \omega$, the set $\left\{\varphi\left(x ; a_{i}, b_{i}, c_{i j}\right) \mid j<\omega\right\}$ is 2-inconsistent
- for each $f \in \omega^{\omega}$, the element d_{f} realizes $\left\{\varphi\left(x ; a_{i}, b_{i}, c_{i f(i)}\right) \mid i<\omega\right\}$.

We use the following cancellation law:

$$
\forall x y z(x \cdot y=x \cdot z \rightarrow y=z) .
$$

We choose an array

$$
\begin{array}{llll}
a_{0} b_{0} c_{00} & a_{0} b_{0} c_{01} & a_{0} b_{0} c_{02} & \ldots \\
a_{1} b_{1} c_{10} & a_{1} b_{1} c_{11} & a_{1} b_{1} c_{12} & \ldots
\end{array}
$$

where the entries are pairwise distinct. Then for $j \neq k$ the formula

$$
\varphi\left(x, a_{i}, b_{i}, c_{i j}\right) \wedge \varphi\left(x, a_{i}, b_{i}, c_{i k}\right) .
$$

is inconsistent, as

$$
a_{i} \cdot\left(b_{i} \cdot\left(c_{i j} \cdot x\right)\right)=a_{i} \cdot\left(b_{i} \cdot\left(c_{i k} \cdot x\right)\right)
$$

implies that $c_{i j}=c_{i k}$.

We use the following cancellation law:

$$
\forall x y z(x \cdot y=x \cdot z \rightarrow y=z)
$$

We choose an array

$$
\begin{array}{lll}
a_{0} b_{0} c_{00} & a_{0} b_{0} c_{01} & a_{0} b_{0} c_{02} \\
a_{1} b_{1} c_{10} & a_{1} b_{1} c_{11} & a_{1} b_{1} c_{12}
\end{array}
$$

where the entries are pairwise distinct. Then for $j \neq k$ the formula

$$
\varphi\left(x, a_{i}, b_{i}, c_{i j}\right) \wedge \varphi\left(x, a_{i}, b_{i}, c_{i k}\right)
$$

is inconsistent, as

$$
a_{i} \cdot\left(b_{i} \cdot\left(c_{i j} \cdot x\right)\right)=a_{i} \cdot\left(b_{i} \cdot\left(c_{i k} \cdot x\right)\right)
$$

implies that $c_{i j}=c_{i k}$.

We use the following cancellation law:

$$
\forall x y z(x \cdot y=x \cdot z \rightarrow y=z)
$$

We choose an array

$$
\begin{array}{lll}
a_{0} b_{0} c_{00} & a_{0} b_{0} c_{01} & a_{0} b_{0} c_{02} \\
a_{1} b_{1} c_{10} & a_{1} b_{1} c_{11} & a_{1} b_{1} c_{12}
\end{array}
$$

where the entries are pairwise distinct.

$$
\varphi\left(x, a_{i}, b_{i}, c_{i j}\right) \wedge \varphi\left(x, a_{i}, b_{i}, c_{i k}\right)
$$

is inconsistent, as
$a_{i} \cdot\left(b_{i} \cdot\left(c_{i j} \cdot x\right)\right)=a_{i} \cdot\left(b_{i} \cdot\left(c_{i k} \cdot x\right)\right)$
implies that $c_{i j}=c_{i k}$.

We use the following cancellation law:

$$
\forall x y z(x \cdot y=x \cdot z \rightarrow y=z)
$$

We choose an array

$$
\begin{array}{lll}
a_{0} b_{0} c_{00} & a_{0} b_{0} c_{01} & a_{0} b_{0} c_{02} \\
a_{1} b_{1} c_{10} & a_{1} b_{1} c_{11} & a_{1} b_{1} c_{12}
\end{array}
$$

where the entries are pairwise distinct. Then for $j \neq k$ the formula

$$
\varphi\left(x, a_{i}, b_{i}, c_{i j}\right) \wedge \varphi\left(x, a_{i}, b_{i}, c_{i k}\right)
$$

is inconsistent, as

$$
a_{i} \cdot\left(b_{i} \cdot\left(c_{i j} \cdot x\right)\right)=a_{i} \cdot\left(b_{i} \cdot\left(c_{i k} \cdot x\right)\right)
$$

implies that $c_{i j}=c_{i k}$.

But given $f \in \omega^{\omega}$, we can choose d_{f} and construct a partial STS such that, for all $i \in \omega$

$$
d_{f}=a_{i} \cdot\left(b_{i} \cdot\left(c_{i f(i)} \cdot x\right)\right)
$$

This is achieved as follows:

- for i, j such that $f(i)=j$, add points $a_{i j f}^{*}$ and $b_{i j f}^{*}$
- define the product on $\left\{d_{f}, a_{i}, b_{i}, c_{i j}, a_{i j f}^{*}, b_{i j f}^{*}\right\}$ so that

$$
d_{f}=a_{i} \cdot a_{i j f}^{*}=a_{i} \cdot\left(b_{i} \cdot b_{i j f}^{*}\right)=a_{i} \cdot\left(b_{i} \cdot\left(c_{i j} \cdot d_{f}\right)\right)
$$

As i ranges over ω and f over ω^{ω}, we obtain a partial STS. This embeds in the monster model.

