Model theory of Steiner triple systems

Silvia Barbina¹

joint work with Enrique Casanovas²

¹The Open University

²Universitat de Barcelona

UMI-SIMAI PTM Joint Meeting, September 2018

Steiner triple systems

Definition

A finite Steiner triple system (STS) of order n is a pair (V, B) where:

- V is a set of n elements;
- *B* is a collection of 3-element subsets of *V* (the **blocks**) such that any two *x*, *y* ∈ *V* are contained in exactly one block.

A set V with a collection of 3-element subsets is a **partial STS** if any two elements of V belong to at most one block.

Steiner triple systems

Definition

A finite Steiner triple system (STS) of order n is a pair (V, B) where:

- V is a set of n elements;
- *B* is a collection of 3-element subsets of *V* (the **blocks**) such that any two *x*, *y* ∈ *V* are contained in exactly one block.

A set V with a collection of 3-element subsets is a **partial STS** if any two elements of V belong to at most one block.

Steiner triple systems

Definition

A finite Steiner triple system (STS) of order n is a pair (V, B) where:

- V is a set of n elements;
- *B* is a collection of 3-element subsets of *V* (the **blocks**) such that any two *x*, *y* ∈ *V* are contained in exactly one block.

A set V with a collection of 3-element subsets is a **partial STS** if any two elements of V belong to at most one block.

< ロ > < 同 > < 回 > < 回 >

Fifteen girls in a school take a walk in rows of three for seven days in succession. Is there an arrangement such that no two girls walk together in a row more than once? (Thomas Penyngton Kirkman, 1850)

STSs appear in

- combinatorial design theory (they are balanced incomplete block designs)
- design of experiments
- coding theory.

More general Steiner systems are connected to the Mathieu groups.

- 4 同 ト - 4 回 ト

Fifteen girls in a school take a walk in rows of three for seven days in succession. Is there an arrangement such that no two girls walk together in a row more than once? (Thomas Penyngton Kirkman, 1850)

STSs appear in

- combinatorial design theory (they are balanced incomplete block designs)
- design of experiments
- coding theory.

More general Steiner systems are connected to the Mathieu groups.

- 4 同 6 4 日 6 4 日 6

Fifteen girls in a school take a walk in rows of three for seven days in succession. Is there an arrangement such that no two girls walk together in a row more than once? (Thomas Penyngton Kirkman, 1850)

STSs appear in

- combinatorial design theory (they are balanced incomplete block designs)
- design of experiments
- coding theory.

More general Steiner systems are connected to the Mathieu groups.

- 4 同 ト 4 目 ト

Fifteen girls in a school take a walk in rows of three for seven days in succession. Is there an arrangement such that no two girls walk together in a row more than once? (Thomas Penyngton Kirkman, 1850)

STSs appear in

- combinatorial design theory (they are balanced incomplete block designs)
- design of experiments
- coding theory.

More general Steiner systems are connected to the Mathieu groups.

- 4 目 ト 4 日 ト

Fifteen girls in a school take a walk in rows of three for seven days in succession. Is there an arrangement such that no two girls walk together in a row more than once? (Thomas Penyngton Kirkman, 1850)

STSs appear in

- combinatorial design theory (they are balanced incomplete block designs)
- design of experiments
- coding theory.

More general Steiner systems are connected to the Mathieu groups.

• When *n* is finite, an STS of order *n* exists if and only if $n \equiv 1$ or 3 (mod 6).

• If we allow $|V| \ge \omega$, the pair (V, \mathcal{B}) is an **infinite STS**.

We can describe blocks via

- a ternary relation R where R(x, y, z) if and only if {x, y, z} is a block, or
- \bullet a binary operation \cdot defined by

$$x \cdot y = z$$
 iff $\{x, y, z\}$ is a block.

When blocks are described by a relation, a substructure of an STS is a *partial* STS. In a functional language, substructures are STSs.

(4 同) 4 ヨ) 4 ヨ)

- When *n* is finite, an STS of order *n* exists if and only if $n \equiv 1$ or 3 (mod 6).
- If we allow $|V| \ge \omega$, the pair (V, \mathcal{B}) is an **infinite STS**.

- a ternary relation R where R(x, y, z) if and only if {x, y, z} is a block, or
- \bullet a binary operation \cdot defined by

$$x \cdot y = z$$
 iff $\{x, y, z\}$ is a block.

When blocks are described by a relation, a substructure of an STS is a *partial* STS. In a functional language, substructures are STSs.

- 4 同 ト 4 ヨ ト

- When *n* is finite, an STS of order *n* exists if and only if $n \equiv 1$ or 3 (mod 6).
- If we allow $|V| \ge \omega$, the pair (V, \mathcal{B}) is an **infinite STS**.

- a ternary relation R where R(x, y, z) if and only if {x, y, z} is a block, or
- \bullet a binary operation \cdot defined by

$$x \cdot y = z$$
 iff $\{x, y, z\}$ is a block.

When blocks are described by a relation, a substructure of an STS is a *partial* STS. In a functional language, substructures are STSs.

- When *n* is finite, an STS of order *n* exists if and only if $n \equiv 1$ or 3 (mod 6).
- If we allow $|V| \ge \omega$, the pair (V, \mathcal{B}) is an **infinite STS**.

- a ternary relation R where R(x, y, z) if and only if {x, y, z} is a block, or
- \bullet a binary operation \cdot defined by

$$x \cdot y = z$$
 iff $\{x, y, z\}$ is a block.

When blocks are described by a relation, a substructure of an STS is a *partial* STS. In a functional language, substructures are STSs.

- When *n* is finite, an STS of order *n* exists if and only if $n \equiv 1$ or 3 (mod 6).
- If we allow $|V| \ge \omega$, the pair (V, \mathcal{B}) is an **infinite STS**.

- a ternary relation R where R(x, y, z) if and only if {x, y, z} is a block, or
- a binary operation \cdot defined by

$$x \cdot y = z$$
 iff $\{x, y, z\}$ is a block.

When blocks are described by a relation, a substructure of an STS is a *partial* STS. In a functional language, substructures are STSs.

・ロト ・雪 ト ・ヨ ト ・

- When *n* is finite, an STS of order *n* exists if and only if $n \equiv 1$ or 3 (mod 6).
- If we allow $|V| \ge \omega$, the pair (V, \mathcal{B}) is an **infinite STS**.

- a ternary relation R where R(x, y, z) if and only if {x, y, z} is a block, or
- a binary operation \cdot defined by

$$x \cdot y = z$$
 iff $\{x, y, z\}$ is a block.

When blocks are described by a relation, a substructure of an STS is a *partial* STS. In a functional language, substructures are STSs.

・ロト ・四ト ・ヨト ・ヨト

- When *n* is finite, an STS of order *n* exists if and only if $n \equiv 1$ or 3 (mod 6).
- If we allow $|V| \ge \omega$, the pair (V, \mathcal{B}) is an **infinite STS**.

- a ternary relation R where R(x, y, z) if and only if {x, y, z} is a block, or
- a binary operation \cdot defined by

$$x \cdot y = z$$
 iff $\{x, y, z\}$ is a block.

When blocks are described by a relation, a substructure of an STS is a *partial* STS. In a functional language, substructures are STSs.

STS axioms

We choose a functional language, so that an STS is a structure (A, \cdot) where \cdot is a binary operation on A such that

Definition

 $T_{
m STS}$ is the theory that contains axioms 1–3 above.

 $T_{\rm STS}$ is a universal theory.

STS axioms

We choose a functional language, so that an STS is a structure (A, \cdot) where \cdot is a binary operation on A such that

Definition

 $T_{\rm STS}$ is the theory that contains axioms 1–3 above.

 $T_{
m STS}$ is a universal theory.

くロ と く 同 と く ヨ と 一

STS axioms

We choose a functional language, so that an STS is a structure (A, \cdot) where \cdot is a binary operation on A such that

$$x \cdot y = y \cdot x x \cdot x = x x \cdot (x \cdot y) = y.$$

Definition

 $T_{\rm STS}$ is the theory that contains axioms 1–3 above.

 $T_{\rm STS}$ is a universal theory.

Extension properties

Fact

• Every finite partial STS can be embedded in a finite STS.

② Every infinite partial STS can be embedded in an STS of the same cardinality.

Extension properties

Fact

- Every finite partial STS can be embedded in a finite STS.
- Every infinite partial STS can be embedded in an STS of the same cardinality.

The class $\ensuremath{\mathcal{C}}$ of all finite Steiner triple systems has

• the Joint Embedding and the Amalgamation Properties

- the Hereditary Property
- countably many isomorphism types.

Therefore C has a Fraïssé limit: the unique (up to isomorphism) countable Steiner triple system M_F which is *ultrahomogeneous* and *universal* (for finite Steiner triple systems).

 M_F is locally finite. It is not ω -categorical.

Questions

What can we say about $Th(M_F)$? Can we describe its models? Does it have q.e.?

< ロ > < 同 > < 回 > < 回 > < 回 > <

The class $\ensuremath{\mathcal{C}}$ of all finite Steiner triple systems has

- the Joint Embedding and the Amalgamation Properties
- the Hereditary Property
- countably many isomorphism types.

Therefore C has a Fraïssé limit: the unique (up to isomorphism) countable Steiner triple system M_F which is *ultrahomogeneous* and *universal* (for finite Steiner triple systems).

 M_F is locally finite. It is not ω -categorical.

Questions

What can we say about $Th(M_F)$? Can we describe its models? Does it have q.e.?

< ロ > < 同 > < 回 > < 回 > < 回 > <

The class $\ensuremath{\mathcal{C}}$ of all finite Steiner triple systems has

- the Joint Embedding and the Amalgamation Properties
- the Hereditary Property
- countably many isomorphism types.

Therefore C has a Fraïssé limit: the unique (up to isomorphism) countable Steiner triple system M_F which is *ultrahomogeneous* and *universal* (for finite Steiner triple systems).

 M_F is locally finite. It is not ω -categorical.

Questions

What can we say about $Th(M_F)$? Can we describe its models? Does it have q.e.?

< ロ > < 同 > < 回 > < 回 > < 回 > <

The class $\ensuremath{\mathcal{C}}$ of all finite Steiner triple systems has

- the Joint Embedding and the Amalgamation Properties
- the Hereditary Property
- countably many isomorphism types.

Therefore C has a Fraïssé limit: the unique (up to isomorphism) countable Steiner triple system M_F which is *ultrahomogeneous* and *universal* (for finite Steiner triple systems).

 M_F is locally finite. It is not ω -categorical.

Questions

What can we say about $Th(M_F)$? Can we describe its models? Does it have q.e.?

The class $\ensuremath{\mathcal{C}}$ of all finite Steiner triple systems has

- the Joint Embedding and the Amalgamation Properties
- the Hereditary Property
- countably many isomorphism types.

Therefore C has a Fraïssé limit: the unique (up to isomorphism) countable Steiner triple system M_F which is *ultrahomogeneous* and *universal* (for finite Steiner triple systems).

 M_F is locally finite. It is not ω -categorical.

Questions

What can we say about $Th(M_F)$? Can we describe its models? Does it have q.e.?

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

Definition

Let B be a finite partial STS. Then

• δ_B is a formula that describes the diagram of B

A ⊆ B is relatively closed in B if for every a, b ∈ A and c ∈ B, if a · b = c then c ∈ A.

Definition

If B is a finite partial STS and $A \subseteq B$ a relatively closed subset, then

$$\phi_{(A,B)} = \forall \bar{x} \left(\delta_A(\bar{x}) \to \exists \bar{y} \, \delta_B(\bar{x}, \bar{y}) \right).$$

Let $\Delta = \{\phi_{(A,B)} : B \text{ is a finite partial STS and } A \subseteq B \text{ is a relatively closed subset}\}.$

Definition

Let B be a finite partial STS. Then

- δ_B is a formula that describes the diagram of B
- A ⊆ B is relatively closed in B if for every a, b ∈ A and c ∈ B, if a · b = c then c ∈ A.

Definition

If B is a finite partial STS and $A \subseteq B$ a relatively closed subset, then

$$\phi_{(A,B)} = \forall \bar{x} \left(\delta_A(\bar{x}) \to \exists \bar{y} \, \delta_B(\bar{x}, \bar{y}) \right).$$

Let $\Delta = \{\phi_{(A,B)} : B \text{ is a finite partial STS and } A \subseteq B \text{ is a relatively closed subset}\}.$

Definition

Let B be a finite partial STS. Then

- δ_B is a formula that describes the diagram of B
- A ⊆ B is relatively closed in B if for every a, b ∈ A and c ∈ B, if a · b = c then c ∈ A.

Definition

If B is a finite partial STS and $A \subseteq B$ a relatively closed subset, then

$$\phi_{(A,B)} = \forall \bar{x} \left(\delta_A(\bar{x}) \to \exists \bar{y} \, \delta_B(\bar{x}, \bar{y}) \right).$$

Let $\Delta = \{\phi_{(A,B)} : B \text{ is a finite partial STS and } A \subseteq B \text{ is a relatively closed subset}\}.$

- 4 同 ト 4 ヨ ト

Definition

Let B be a finite partial STS. Then

- δ_B is a formula that describes the diagram of B
- A ⊆ B is relatively closed in B if for every a, b ∈ A and c ∈ B, if a · b = c then c ∈ A.

Definition

If B is a finite partial STS and $A \subseteq B$ a relatively closed subset, then

$$\phi_{(A,B)} = \forall \bar{x} \left(\delta_A(\bar{x}) \to \exists \bar{y} \, \delta_B(\bar{x}, \bar{y}) \right).$$

Let $\Delta = \{\phi_{(A,B)} : B \text{ is a finite partial STS and } A \subseteq B \text{ is a relatively closed subset}\}.$

Fact

 $M_F \models T^*_{STS}.$

There is more.

Theorem

The theory $T^*_{
m STS}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- \bullet is the model companion of $T_{\rm STS}$
- is complete
- has quantifier elimination.
- M_F is a prime model of $T^*_{\rm STS}$.

(E)

< 47 ▶

Fact

 $M_F \models T^*_{STS}.$

There is more.

Theorem

The theory T^*_{STS}

axiomatises the existentially closed Steiner triple systems

- is model complete
- \bullet is the model companion of $T_{\rm STS}$
- is complete
- has quantifier elimination.

 M_F is a prime model of T^*_{STS} .

くぼ ト く ヨ ト く ヨ ト

Fact

 $M_F \models T^*_{STS}.$

There is more.

Theorem

The theory $T^*_{\rm STS}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- \bullet is the model companion of $T_{\rm STS}$
- is complete
- has quantifier elimination.
- M_F is a prime model of $T^*_{
 m STS}$.

Fact

 $M_F \models T^*_{STS}.$

There is more.

Theorem

The theory $T^*_{\rm STS}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- \bullet is the model companion of $T_{\rm STS}$
- is complete
- has quantifier elimination.
- M_F is a prime model of T^*_{STS} .

Fact

 $M_F \models T^*_{STS}.$

There is more.

Theorem

The theory $T^*_{\rm STS}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- \bullet is the model companion of $T_{\rm STS}$
- is complete
- has quantifier elimination.

 M_F is a prime model of $T^*_{
m STS}$.

Fact

 $M_F \models T^*_{STS}.$

There is more.

Theorem

The theory $T^*_{\rm STS}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- \bullet is the model companion of $T_{\rm STS}$
- is complete
- has quantifier elimination.

 M_{F} is a prime model of $T^*_{\mathrm{STS}}.$

The theory of M_F Let $T^*_{\text{STS}} = \Delta \cup T_{\text{STS}}$.

Fact

 $M_F \models T^*_{STS}.$

There is more.

Theorem

The theory $T^*_{\rm STS}$

- axiomatises the existentially closed Steiner triple systems
- is model complete
- \bullet is the model companion of $T_{\rm STS}$
- is complete
- has quantifier elimination.
- M_F is a prime model of $T^*_{\rm STS}$.

★ ∃ ► < ∃ ►</p>

< 17 ▶

- $\bullet~{\cal T}_{\rm STS}$ is universal, so every model extends to an e.c. model
- $T^*_{\rm STS}$ axiomatises the e.c. models of $T_{\rm STS}$

Therefore $T^*_{\rm STS}$ is the model companion of $T_{\rm STS}$.

In particular, T^*_{STS} is model complete.

 $T^*_{\rm STS}$ has the joint embedding property (because $T_{\rm STS}$ has), and it is model complete. Therefore $T^*_{\rm STS}$ is complete.

 $T^*_{
m STS}$ has the amalgamation property (because $\mathcal{T}_{
m STS}$ has), and it is model complete.

Therefore T^*_{STS} has quantifier elimination.

- $\bullet~{\cal T}_{\rm STS}$ is universal, so every model extends to an e.c. model
- $T^*_{\rm STS}$ axiomatises the e.c. models of $T_{\rm STS}$

Therefore T^*_{STS} is the model companion of T_{STS} .

In particular, T^*_{STS} is model complete.

 $T^*_{\rm STS}$ has the joint embedding property (because $T_{\rm STS}$ has), and it is model complete. Therefore $T^*_{\rm STS}$ is complete.

 $T^*_{
m STS}$ has the amalgamation property (because $\mathcal{T}_{
m STS}$ has), and it is model complete.

Therefore T^*_{STS} has quantifier elimination.

- $\bullet~{\cal T}_{\rm STS}$ is universal, so every model extends to an e.c. model
- ${\cal T}^*_{\rm STS}$ axiomatises the e.c. models of ${\cal T}_{\rm STS}$

Therefore T^*_{STS} is the model companion of T_{STS} .

In particular, $T^*_{\rm STS}$ is model complete.

 $T^*_{\rm STS}$ has the joint embedding property (because $T_{\rm STS}$ has), and it is model complete. Therefore $T^*_{\rm STS}$ is complete.

 ${\cal T}^*_{
m STS}$ has the amalgamation property (because ${\cal T}_{
m STS}$ has), and it is model complete.

Therefore T^*_{STS} has quantifier elimination.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $\bullet~{\cal T}_{\rm STS}$ is universal, so every model extends to an e.c. model
- $T^*_{\rm STS}$ axiomatises the e.c. models of $T_{\rm STS}$

Therefore T^*_{STS} is the model companion of T_{STS} .

In particular, T^*_{STS} is model complete.

 $T^*_{\rm STS}$ has the joint embedding property (because $T_{\rm STS}$ has), and it is model complete. Therefore $T^*_{\rm STS}$ is complete.

 $T^*_{
m STS}$ has the amalgamation property (because $T_{
m STS}$ has), and it is model complete.

Therefore T^*_{STS} has quantifier elimination.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $\bullet~{\cal T}_{\rm STS}$ is universal, so every model extends to an e.c. model
- $T^*_{\rm STS}$ axiomatises the e.c. models of $T_{\rm STS}$

Therefore T^*_{STS} is the model companion of T_{STS} .

In particular, T^*_{STS} is model complete.

 $\mathcal{T}^*_{\rm STS}$ has the joint embedding property (because $\mathcal{T}_{\rm STS}$ has), and it is model complete. Therefore $\mathcal{T}^*_{\rm STS}$ is complete.

 ${\cal T}^*_{\rm STS}$ has the amalgamation property (because ${\cal T}_{\rm STS}$ has), and it is model complete.

Therefore T^*_{STS} has quantifier elimination.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

The theory $T^*_{\rm STS}$

- is not small
- is TP₂
- *is* NSOP₁

• has elimination of hyperimaginaries and weak elimination of imaginaries.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem

The theory $T^*_{\rm STS}$

- is not small
- *is* TP₂
- *is* NSOP₁

• has elimination of hyperimaginaries and weak elimination of imaginaries.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem

The theory $T^*_{\rm STS}$

- is not small
- *is* TP₂
- is NSOP₁

• has elimination of hyperimaginaries and weak elimination of imaginaries.

< 17 ► <

3 × < 3 ×

Theorem

The theory $T^*_{\rm STS}$

- is not small
- *is* TP₂
- is NSOP₁
- has elimination of hyperimaginaries and weak elimination of imaginaries.

→ < ∃→

< 17 ▶ <

TP_2

Definition

A formula $\varphi(\overline{x}; \overline{y})$ has the tree property of the second kind (TP₂) in T if in the monster model of T there is an array of tuples $(\overline{a}_{ij} \mid i, j < \omega)$ and some natural number k such that

- for each $i < \omega$ the set $\{\varphi(\overline{x}, \overline{a}_{ij}) \mid j < \omega\}$ is k-inconsistent
- for each $f: \omega \to \omega$ the path $\{\varphi(\overline{x}, \overline{a}_{if(i)}) \mid i < \omega\}$ is consistent.

We say that T is TP_2 if some formula has TP_2 in T.

a ₀₀	a_{01}	a ₀₂	a 03	
\overline{a}_{10}	\overline{a}_{11}	\overline{a}_{12}	\overline{a}_{13}	
\overline{a}_{20}	\overline{a}_{21}	a ₂₂	a ₂₃	
	1.1			

< ロ > < 同 > < 回 > < 回 > < 回 > <

TP_2

Definition

A formula $\varphi(\overline{x}; \overline{y})$ has the tree property of the second kind (TP₂) in T if in the monster model of T there is an array of tuples $(\overline{a}_{ij} \mid i, j < \omega)$ and some natural number k such that

- for each $i < \omega$ the set $\{\varphi(\overline{x}, \overline{a}_{ij}) \mid j < \omega\}$ is k-inconsistent
- for each $f: \omega \to \omega$ the path $\{\varphi(\overline{x}, \overline{a}_{if(i)}) \mid i < \omega\}$ is consistent.

We say that T is TP_2 if some formula has TP_2 in T.

a ₀₀	\overline{a}_{01}	a ₀₂	a ₀₃	
\overline{a}_{10}	\overline{a}_{11}	\overline{a}_{12}	\overline{a}_{13}	
\overline{a}_{20}	\overline{a}_{21}	a ₂₂	\overline{a}_{23}	

TP_2

Definition

A formula $\varphi(\overline{x}; \overline{y})$ has the tree property of the second kind (TP₂) in T if in the monster model of T there is an array of tuples $(\overline{a}_{ij} \mid i, j < \omega)$ and some natural number k such that

- for each $i < \omega$ the set $\{\varphi(\overline{x}, \overline{a}_{ij}) \mid j < \omega\}$ is k-inconsistent
- for each $f: \omega \to \omega$ the path $\{\varphi(\overline{x}, \overline{a}_{if(i)}) \mid i < \omega\}$ is consistent.

We say that T is TP_2 if some formula has TP_2 in T.

\overline{a}_{01}	\overline{a}_{02}	\overline{a}_{03}	
\overline{a}_{11}	\overline{a}_{12}	\overline{a}_{13}	
\overline{a}_{21}	\overline{a}_{22}	\overline{a}_{23}	
:	:	÷	
	\overline{a}_{11}	\overline{a}_{11} \overline{a}_{12}	

くロ と く 同 と く ヨ と 一

The formula

$$\varphi(x; y_1, y_2, y_3) \equiv x = (y_1 \cdot (y_2 \cdot (y_3 \cdot x)))$$

has TP_2 in T^*_{Sq} .

Proof (sketch).

We build

- an array $(a_i b_i c_{ij} \mid i, j < \omega)$
- a sequence $(d_f \mid f \in \omega^{\omega})$

and define a partial STS such that

- for each $i \in \omega$, the set $\{\varphi(x; a_i, b_i, c_{ij}) \mid j < \omega\}$ is 2-inconsistent
- for each $f \in \omega^{\omega}$, the element d_f realizes $\{\varphi(x; a_i, b_i, c_{if(i)}) \mid i < \omega\}$.

< ロ > < 同 > < 三 > < 三 >

The formula

$$\varphi(x; y_1, y_2, y_3) \equiv x = (y_1 \cdot (y_2 \cdot (y_3 \cdot x)))$$

has TP_2 in T^*_{Sq} .

Proof (sketch).

We build

• an array $(a_i b_i c_{ij} \mid i, j < \omega)$

• a sequence $(d_f \mid f \in \omega^{\omega})$

and define a partial STS such that

• for each $i \in \omega$, the set $\{\varphi(x; a_i, b_i, c_{ij}) \mid j < \omega\}$ is 2-inconsistent

• for each $f \in \omega^{\omega}$, the element d_f realizes $\{\varphi(x; a_i, b_i, c_{if(i)}) \mid i < \omega\}$.

э

The formula

$$\varphi(x; y_1, y_2, y_3) \equiv x = (y_1 \cdot (y_2 \cdot (y_3 \cdot x)))$$

has TP_2 in T^*_{Sq} .

Proof (sketch).

We build

- an array $(a_i b_i c_{ij} \mid i, j < \omega)$
- a sequence $(d_f \mid f \in \omega^{\omega})$

and define a partial STS such that

• for each $i \in \omega$, the set $\{\varphi(x; a_i, b_i, c_{ij}) \mid j < \omega\}$ is 2-inconsistent

• for each $f \in \omega^{\omega}$, the element d_f realizes $\{\varphi(x; a_i, b_i, c_{if(i)}) \mid i < \omega\}$.

э

The formula

$$\varphi(x; y_1, y_2, y_3) \equiv x = (y_1 \cdot (y_2 \cdot (y_3 \cdot x)))$$

has TP_2 in T^*_{Sq} .

Proof (sketch).

We build

- an array $(a_i b_i c_{ij} \mid i, j < \omega)$
- a sequence $(d_f \mid f \in \omega^{\omega})$

and define a partial STS such that

• for each $i \in \omega$, the set $\{\varphi(x; a_i, b_i, c_{ij}) \mid j < \omega\}$ is 2-inconsistent

• for each $f \in \omega^{\omega}$, the element d_f realizes $\{\varphi(x; a_i, b_i, c_{if(i)}) \mid i < \omega\}$.

э

The formula

$$\varphi(x; y_1, y_2, y_3) \equiv x = (y_1 \cdot (y_2 \cdot (y_3 \cdot x)))$$

has TP_2 in T^*_{Sq} .

Proof (sketch).

We build

- an array $(a_i b_i c_{ij} \mid i, j < \omega)$
- a sequence $(d_f \mid f \in \omega^{\omega})$

and define a partial STS such that

- for each $i \in \omega$, the set $\{\varphi(x; a_i, b_i, c_{ij}) \mid j < \omega\}$ is 2-inconsistent
- for each $f \in \omega^{\omega}$, the element d_f realizes $\{\varphi(x; a_i, b_i, c_{if(i)}) \mid i < \omega\}$.

э

$$\forall xyz (x \cdot y = x \cdot z \to y = z).$$

We choose an array

where the entries are pairwise distinct. Then for $j \neq k$ the formula

$$\varphi(x, a_i, b_i, c_{ij}) \land \varphi(x, a_i, b_i, c_{ik}).$$

is inconsistent, as

$$a_i \cdot (b_i \cdot (c_{ij} \cdot x)) = a_i \cdot (b_i \cdot (c_{ik} \cdot x))$$

$$\forall xyz (x \cdot y = x \cdot z \to y = z).$$

We choose an array

where the entries are pairwise distinct. Then for $j \neq k$ the formula

$$\varphi(x, a_i, b_i, c_{ij}) \land \varphi(x, a_i, b_i, c_{ik}).$$

is inconsistent, as

$$a_i \cdot (b_i \cdot (c_{ij} \cdot x)) = a_i \cdot (b_i \cdot (c_{ik} \cdot x))$$

$$\forall xyz (x \cdot y = x \cdot z \to y = z).$$

We choose an array

$a_0 b_0 c_{00}$	$a_0 b_0 c_{01}$	$a_0 b_0 c_{02}$	
$a_1b_1c_{10}$	$a_1b_1c_{11}$	$a_1b_1c_{12}$	
•	•	•	

where the entries are pairwise distinct. Then for $j \neq k$ the formula

$$\varphi(x, a_i, b_i, c_{ij}) \land \varphi(x, a_i, b_i, c_{ik}).$$

is inconsistent, as

$$a_i \cdot (b_i \cdot (c_{ij} \cdot x)) = a_i \cdot (b_i \cdot (c_{ik} \cdot x))$$

$$\forall xyz (x \cdot y = x \cdot z \to y = z).$$

We choose an array

where the entries are pairwise distinct. Then for $j \neq k$ the formula

$$\varphi(x, a_i, b_i, c_{ij}) \land \varphi(x, a_i, b_i, c_{ik}).$$

is inconsistent, as

$$a_i \cdot (b_i \cdot (c_{ij} \cdot x)) = a_i \cdot (b_i \cdot (c_{ik} \cdot x))$$

But given $f \in \omega^{\omega}$, we can choose d_f and construct a partial STS such that, for all $i \in \omega$

$$d_f = a_i \cdot (b_i \cdot (c_{i f(i)} \cdot x)).$$

This is achieved as follows:

- for i, j such that f(i) = j, add points a_{iif}^* and b_{iif}^*
- define the product on $\{d_f, a_i, b_i, c_{ij}, a_{ijf}^*, b_{ijf}^*\}$ so that

$$d_f = a_i \cdot a_{ijf}^* = a_i \cdot (b_i \cdot b_{ijf}^*) = a_i \cdot (b_i \cdot (c_{ij} \cdot d_f)),$$

As *i* ranges over ω and *f* over ω^{ω} , we obtain a partial STS. This embeds in the monster model.